
Deep learning for the identification of multidrug
resistance in MALDI-TOF MS samples of Escherichia

coli

Xaviera A. López-Cortés
Department of Computer Science and Industries

Universidad Católica del Maule
Talca, Chile

xlopez@ucm.cl

José M. Manríquez-Troncoso
Department of Computer Science and Industries

Universidad Católica del Maule
Talca, Chile

jose.manriquez@alu.ucm.cl

Abstract

Research studying the prediction of antibiotic resistance based on mass spectrome-
try data and machine learning focuses only on simple models for the identification
of resistance to one antibiotic at a time, Even though a problem of multidrug
resistance is currently being faced. Therefore, in this study, a multi-label ap-
proach for classifying multidrug resistance in Escherichia coli samples using raw
MALDI-TOF mass spectrometry data and deep learning techniques was developed.
The spectra from a recently published public database, encompassing over 4,500
samples of the bacteria under study, were utilized, sufficient for training a deep
learning model, specifically a one dimensional convolutional neural network for
this case. The use of this architecture proves to be highly efficient, achieving
weighted AUROC and AUPRC values equal to or greater than 0.80, as well as a
general performance calculated using the Hamming loss metric reaching 0.132.
These results demonstrate that the use of deep learning allows for the development
of complex models that enable the simultaneous identification of a predefined set
of antibiotics, aiding in the determination of a highly effective treatment.

1 Introduction

Antibiotic resistance has emerged as a global health problem in recent years. Only in the United
States, over 23,000 people die each year due to this cause [1]. Antibiotic resistance develops when
bacteria evolve and can continue to thrive even in the presence of antibiotics that were previously
used for their treatment [2]. Two mechanisms of antibiotic resistance can be identified: Intrinsic
resistance, which involves bacterial genera or subspecies that possess unique characteristics that
provide them with resistance to antibiotics [3]. On the other hand, Acquired resistance occurs when
susceptible bacteria develop antibiotic resistance through the adaptation of the genetic code from
resistant strains [4], which can occur in three ways:

• Minimization of the intracellular concentrations of an antibiotic.
• Modification of the antibiotic target by genetic mutation.
• Inactivation of the antibiotic by hydrolysis or modification.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Currently, the clinical routine to determine if a specific bacterium is resistant to a series of antibiotics
requires extracting a sample and subjecting it to a culture in the presence of potential treatments.
This test can take between 24 and 72 hours, which is detrimental in severe cases where patients
require rapid and accurate treatment. In recent years, the Matrix Assisted Laser Desorption/Ionization
Time-Of-Flight Mass Spectrometer (MALDI-TOF) technique has been increasingly incorporated
into clinical practice [5] at an exponential rate. This is due to its multiple benefits, such as speed,
precision, and minimal requirement of biological material. Therefore, this technique is currently used
for microbial identification [6], subspecies identification [7], and analysis of antibiotic resistance
[8]. In the area of antimicrobial resistance study, MALDI-TOF is capable of measuring subtle
proteomic differences between a susceptible bacterium and one that exhibits resistance to a specific
antibiotic. In this regard, research has begun to integrate the information provided by MALDI-TOF
mass spectra with machine learning algorithms. Initially, this approach has been used for species
or disease identification [9–12], as well as in conjunction with AMR test results to develop models
that allow rapid and accurate diagnosis of resistance to a specific antibiotic. Numerous studies have
been carried out in this area, mainly focusing on bacteria of major research interest as defined by
the WHO [13]. Examples include the use of SVM algorithms to identify vancomycin resistance
in Enterococcus faecium samples [14] and to identify methicillin-resistant Staphylococcus aureus
derivatives [15]. Among the main issues identified in this field, one of the challenges is defining
a standardized methodology for preprocessing spectra, considering the high dimensionality and
noise that can be present in this type of data depending on the equipment used for its collection.
Researchers have attempted to address this by using kernels to identify peaks with higher variability
between classes [16], or by employing autoencoders to reduce mass spectra to a lower-dimensional
vector [17]. Additionally, many of the studies only cover a limited number of samples, which hinders
the use of more complex deep learning models. However, in 2022, a public database containing
over 300,000 MALDI-TOF mass spectra became available [18]. Finally, the majority of the works
in this field focus on developing models for the identification of resistance to a single antibiotic,
while the current challenge lies in addressing multidrug resistance [19]. The availability of a large
number of spectra along with their profiles of antibiotic resistance provides us with the opportunity
to develop more complex models that can classify resistance to multiple antibiotics simultaneously.
Therefore, in this work, we propose the development of a convolutional neural network model with a
multi-label application for identifying multidrug resistance in Escherichia coli samples based on raw
mass spectra. This approach significantly reduces the typical tasks involved in processing this type of
data, such as smoothing, baseline correction, peak picking, among others.

2 Material and Methods

2.1 Dataset

In this study, the mass spectra from the public database DRIAMS [18] have been used, which consists
of over 300,000 MALDI-TOF spectra of various bacterial and fungal species, along with more
than 750,000 antimicrobial resistance profiles. This database is divided into four subcollections
(DRIAMS-A, DRIAMS-B, DRIAMS-C, DRIAMS-D) corresponding to different laboratories where
the samples were collected. For this work, the data from DRIAMS-A has been considered, as it has
the largest number of samples. For this case, Escherichia coli samples has been chosen, which is
among the most critical group of priority pathogens identified by the World Health Organization
[13], along with the antibiotics Ceftriaxone and Ciprofloxacin. These antibiotics are of high research
interest due to the recent increase in identified resistant strains [20, 21]. To construct the datasets used
in the models, a matrix was formed using the raw mass spectra, which were subjected to a binning
process considering a range of 2,000 Da to 10,000 Da with a bin size of 2 Da to obtain a vector of
4,000 features applicable to our model. Subsequently, the data were normalized between 0 and 1 and
finally divided into 70% for training, 10% for validation, and 20% for testing the final model. Table 1
shows the distribution of samples for each of the studied antibiotics.

Table 1: Number of samples for each antibiotic

Antibiotic Resistant Susceptible

Ciprofloxacin 1.449 3.411

Ceftriaxone 1.039 3.821
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2.2 Deep learning model

In this work, a one dimensional (1-D) convolutional neural network (CNN) has been implemented
for the multi-label classification of resistance or susceptibility to two commonly used antibiotics in
the treatment of Escherichia coli infections. This type of network is characterized by its ability to
learn simple features such as lines or edges when working with images, and to identify more complex
features such as subtle differences in peak intensities at a specific mass value that differentiate whether
the bacterial strain belongs to one class or another.

A convolutional neural network [22] typically consists of the following elements:

• Convolutional layers: A convolution consists of applying a filter (also called kernel) to an
input. Repeatedly applying the same filter to different patches of an input results in a map
of activations called a feature map, which indicates the locations and strength of a feature
detected in input.

• Pooling layers: they down-sample their input to reduce their dimensionality in the following
layers, save storage space, speed up the computation, and avoid overfitting problems.

• Dropout: The term “dropout” refers to dropping out units (hidden and visible) in a neural
network. By dropping a unit out, we mean temporarily removing it from the network, along
with all its incoming and outgoing connections, commonly used to reduce overfitting.

• Fully connected layers: Play the role of classifier in a CNN, is used at the end of the
model after the convolutional and pooling layers have performed feature extraction and
consolidation.

2.3 Hyperparameter Search

In order to find the model that best fits the problem at hand, the KerasTuner library [23] has been
used, which provides a fully configurable hyperparameter optimization framework. For this work,
the Bayesian optimization algorithm has been implemented to identify the best combination of the
following parameters:

• Number of 1-D convolutional layers (1 to 5).
• Number of filters and kernels for each 1-D convolutional layer (filters: 32 - 128 with a step

of 16, kernels: 2 - 11 with a step of 1).
• Number of fully connected layers (1 to 5).
• Number of neurons for each fully connected (32 - 256 with a step of 16).
• Learning rate (0.001 - 0.0001 - 0.00001).

For the 1-D convolution layers and fully connected layers, the RELU activation function was used.
In order to mitigate overfitting and expedite the training process, the EarlyStopping callback was
implemented, while ReduceLROnPlateau was employed to enhance model convergence. The above
implementation was done using tensorflow 2.13, keras 2.13.1 on a nvidia RTX A4000 GPU.

To perform a performance comparison with more traditional machine learning algorithms, a Bayesian
hyperparameter search was also performed on the Extreme Gradient Boosting (XGB) algorithm,
optimizing the following hyperparameters.

• max_depth (1 to 10).
• min_child_weight (0.0001 to 10).
• max_delta_step (0.0001 to 10).
• gamma (0.0001 to 10).
• eta (0.0001 to 1)

In relation to computational costs, cross validation was not performed in conjunction with the hyperpa-
rameter search, so once the best hyperparameters for the neural network and XGB were defined, a 10-
fold cross validation was implemented to study the level of generalization of the model. Therefore, the
results reported are the mean of 10 iterations (code avaliable: https://github.com/ManriquezJM/Deep-
learning-multidrug-resistance).
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2.4 Evaluation Metrics

To evaluate the performance of the predictive model, the test set corresponding to 20% of the total
data was used. The evaluation metrics for the optimized model were:

AUROC (Area Under the Receiver Operating Characteristic curve): The ROC curve shows the
relationship between the true positive rate (sensitivity) and the false positive rate (1-specificity). It is
a commonly applied metric for evaluating diagnostic and prognostic models in medicine. In this case,
the weighted AUROC of the model and the labels were calculated separately.

AUPRC (Area Under the Precision-Recall Curve): This metric is used to evaluate models where
the classes are imbalanced. Unlike AUROC, this metric is calculated considering precision and recall.
In this case, the weighted AUPRC of the model and the labels were calculated separately.

Hamming Loss: Commonly used in multi-label classification problems, it is calculated based on the
proportion of correctly predicted labels relative to the total number of labels. Hamming Loss ranges
from 0 to 1, where a value close to 0 indicates a lower error in label classification.

F1-Score: This metric combines precision and recall to provide an overall measure of model
performance for all classes. A F1-Score value near to one indicates better performance.

3 Results

In the present study, a deep learning model was developed for the multi-label classification of
antibiotic resistance in Escherichia coli bacteria to Ceftriaxone and Ciprofloxacin. The main results
obtained are presented below.

3.1 Final deep learning Model

Figure 1 shows the final architecture of the deep learning model that demonstrated the best perfor-
mance during the hyperparameter tuning process. It consisted of 4 convolutional layers with filter
sizes of 64, 80, 32, 80, and kernel sizes of 8, 7, 11, 2, respectively. A Dropout layer was added
after the flattening layer to reduce overfitting. Finally, the classification module consisted of 3 fully
connected layers with 144, 144, and 192 neurons, respectively.

For the XGB model the best hyperparameters were: max_depth : 8; min_child_weight : 2;
max_delta_step : 2; gamma: 0.1 and eta : 0.1

Figure 1: Convolutional neural network model.
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3.2 Training performance

As mentioned earlier, various regularization methodologies were applied, such as the use of dropout
layers, reducing the learning rate, and early stopping. The training loss and validation loss were
plotted for a random split to monitor the model’s behavior. Figure 2 shows that with only 45 epochs,
the model converges well, achieving a slight difference between the training loss and validation loss
of just 0.0496 points.

Figure 2: Training history showing the train loss and validation loss for a random split in the deep
learning model.

3.3 Classification Performance

To evaluate the performance of the final model, metrics such as AUROC, AUPRC, Hamming Loss,
and F1-Score were calculated using the test set. As shown in Table 2, the proposed deep learning
model greatly surpassed the performance of the XGB model, achieving a weighted AUROC value of
0.891 and a weighted AUPRC of 0.812, compared to 0.693 (AUROC) and 0.514 (AUPRC) obtained
with XGB. Regarding the metrics that assess overall performance across all classes, the Hamming
Loss obtained a value of 0.132 in the CNN model, better than the 0.172 achieved by XGB (closer to
0 is better), while the F1-Score reached 0.710, surpassing the 0.535 achieved in the XGB model.

Table 2: 10-fold cross-validation performance results on final models.

Algorithm AUROC AUPRC Hamming Loss F1-Score

CNN 0.891±0.01 0.812±0.03 0.132±0.003 0.710±0.02
XGB 0.693±0.02 0.514±0.03 0.172±0.005 0.535±0.04

The implemented deep learning model also allows us to evaluate each label separately, enabling
us to identify which antibiotic performed better individually. As seen in Figure 3, the Ceftriaxone
antibiotic achieved a notable AUROC of 0.922 with an AUPRC of 0.849, while the classification of
resistance in Ciprofloxacin showed slightly lower performance, with an AUROC of 0.861 and an
AUPRC of 0.775.
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Figure 3: AUROC and AUPRC curves for each of the labels. The value shown in the tables within
the figure corresponds to the mean of the 10-fold

3.4 Conclusion and discussion

In this work, a method for the identification of antibiotic multiresistance in Escherichia coli bacteria
based on the use of convolutional neural networks (CNN) was proposed, from which the following
conclusions were drawn.

Regarding spectrum preprocessing, only binning was applied to obtain a fixed-length vector applicable
to our models. It was demonstrated that the CNN does not present major issues when working
with raw massive data, which can be beneficial in clinical practice as it reduces the time spent
on preprocessing tasks. Furthermore, it was shown that the use of deep learning significantly
outperforms the results obtained by classical machine learning algorithms like XGB. In terms of
overall classification performance, it was observed that training a model capable of discriminating
resistance or susceptibility to multiple antibiotics simultaneously is possible. This is crucial for
identifying the most effective treatment for an infection. Analyzing the results obtained for each
antibiotic, it was found that the resistance classification performed better for Ceftriaxone compared
to Ciprofloxacin. This could be directly related to the fact that Ceftriaxone exhibits a greater class
imbalance (953 resistant samples vs. 3299 susceptible samples), which is one of the common
disadvantages of using neural networks, as they require a large number of samples for training.

In relation to the limitations of this work it is important to mention that the models are adjusted to the
spectra collected by a specific MALDI-TOF equipment (Bruker Daltonics) and the bacterial strains
were collected in a specific geographic region, so it is important that in future works the compatibility
of these models with bacterial strains collected in a totally different geographic region be investigated.
On the other hand, to train this type of neural networks it is necessary to have a large amount of
data, which are generally not regularly available, either because of the low collection capacity of
laboratories or because of privatization policies.

As future work, it is necessary to address the class imbalance in this type of data, and it is also impor-
tant to investigate how these models can be adapted to mass spectra collected in other geographical
areas and with collection equipment from a different manufacturer. This will assist laboratories that
have low sample collection capacity but would benefit from the use of a pre-trained model.

In general, it has been demonstrated that the use of CNN is a viable alternative for the identification
of antibiotic multiresistance when a large number of samples are available for training. The use of
this architecture allows for the construction of complex systems for resistance analysis against a
broader range of antibiotics, reducing the time required for treatment decision-making in patient care.
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resistance strategies, Postępy Mikrobiologii - Advancements of Microbiology 59 (2020) 49–62.

[3] R. E. Impey, D. A. Hawkins, J. M. Sutton, T. P. S. da Costa, Overcoming intrinsic and acquired
resistance mechanisms associated with the cell wall of gram-negative bacteria, Antibiotics 9
(2020) 1–19.

[4] A. H. V. Hoek, D. Mevius, B. Guerra, P. Mullany, A. P. Roberts, H. J. Aarts, Acquired antibiotic
resistance genes: An overview, Frontiers in Microbiology 2 (2011) 12596.

[5] M. Welker, A. V. Belkum, V. Girard, J. P. Charrier, D. Pincus, An update on the routine
application of maldi-tof ms in clinical microbiology, Expert Review of Proteomics 16 (2019)
695–710.

[6] E. Carbonnelle, L. Raskine, Applications de la spectrométrie de masse de type maldi-tof en
microbiologie, Bio Tribune Magazine 39 (2011) 35–42.

[7] C. A. Huber, S. J. Reed, D. L. Paterson, Bacterial sub-species typing using matrix-assisted laser
desorption/ionization time of flight mass spectrometry: What is promising?, Current Issues in
Molecular Biology 2021, Vol. 43, Pages 749-757 43 (2021) 749–757.

[8] M. Cordovana, A. B. Pranada, S. Ambretti, M. Kostrzewa, Maldi-tof bacterial subtyping to
detect antibiotic resistance, Clinical Mass Spectrometry 14 Pt A (2019) 3.

[9] C. González, C. A. Astudillo, X. A. López-Cortés, S. Maldonado, Semi-supervised learning for
maldi–tof mass spectrometry data classification: an application in the salmon industry, Neural
Computing and Applications 35 (2023) 9381–9391.

[10] C. E. Guajardo, X. A. Lopez-Cortes, S. H. Alvarez, Deep learning algorithm applied to bacteria
recognition, 2022 IEEE International Conference on Automation/25th Congress of the Chilean
Association of Automatic Control: For the Development of Sustainable Agricultural Systems,
ICA-ACCA 2022 (2022).

[11] X. A. López-Cortés, F. M. Nachtigall, V. R. Olate, M. Araya, S. Oyanedel, V. Diaz, E. Jakob,
M. Ríos-Momberg, L. S. Santos, Fast detection of pathogens in salmon farming industry,
Aquaculture 470 (2017) 17–24.

[12] M. T. Ibanez-Barrios, X. A. Lopez-Cortes, X-massfp: A platform with focus on pattern
research for mass spectrometry fingerprint recognition, 2021 IEEE International Conference on
Automation/24th Congress of the Chilean Association of Automatic Control, ICA-ACCA 2021
(2021).

[13] G. V. Asokan, T. Ramadhan, E. Ahmed, H. Sanad, Who global priority pathogens list: A
bibliometric analysis of medline-pubmed for knowledge mobilization to infection prevention
and control practices in bahrain, Oman Medical Journal 34 (2019) 184.

7



[14] H.-Y. Wang, C.-R. Chung, C.-J. Chen, K.-P. Lu, Y.-J. Tseng, T.-H. Chang, M.-H. Wu, W.-T.
Huang, T.-W. Lin, T.-P. Liu, T.-Y. Lee, J.-T. Horng, J.-J. Lu, Clinically applicable system for
rapidly predicting enterococcus faecium susceptibility to vancomycin, Microbiology Spectrum
9 (2021).

[15] J. Yu, N. Tien, Y.-C. Liu, D.-Y. Cho, J.-W. Chen, Y.-T. Tsai, Y.-C. Huang, H.-J. Chao, C.-J.
Chen, Rapid identification of methicillin-resistant staphylococcus aureus using maldi-tof ms
and machine learning from over 20,000 clinical isolates, Microbiology Spectrum 10 (2022).

[16] C. Weis, M. Horn, B. Rieck, A. Cuénod, A. Egli, K. Borgwardt, Topological and kernel-based
microbial phenotype prediction from maldi-tof mass spectra, Bioinformatics 36 (2020) i30–i38.

[17] Y. Li, Z. Gan, X. Zhou, Z. Chen, Accurate classification of listeria species by maldi-tof
mass spectrometry incorporating denoising autoencoder and machine learning, Journal of
Microbiological Methods 192 (2022) 106378.

[18] C. Weis, A. Cuénod, B. Rieck, O. Dubuis, S. Graf, C. Lang, M. Oberle, M. Brackmann, K. K.
Søgaard, M. Osthoff, K. Borgwardt, A. Egli, Direct antimicrobial resistance prediction from
clinical maldi-tof mass spectra using machine learning, Nature Medicine 2022 28:1 28 (2022)
164–174.

[19] R. Giurazza, M. C. Mazza, R. Andini, P. Sansone, M. C. Pace, E. Durante-Mangoni, Emerging
treatment options for multi-drug-resistant bacterial infections, Life 2021, Vol. 11, Page 519 11
(2021) 519.

[20] I. Torres, E. Albert, E. Giménez, B. Olea, A. Valdivia, T. Pascual, D. Huntley, D. Sánchez,
R. M. Costa, C. Pinto, R. Oltra, J. Colomina, D. Navarro, Performance of a maldi-tof mass
spectrometry-based method for rapid detection of third-generation oxymino-cephalosporin-
resistant escherichia coli and klebsiella spp. from blood cultures, European Journal of Clinical
Microbiology and Infectious Diseases 40 (2021) 1925–1932.

[21] M. D. Phan, K. M. Peters, L. A. Fraga, S. C. Wallis, S. J. Hancock, N. T. K. Nhu, B. M. Forde,
M. J. Bauer, D. L. Paterson, S. A. Beatson, J. Lipman, M. A. Schembri, Plasmid-mediated
ciprofloxacin resistance imparts a selective advantage on escherichia coli st131, Antimicrobial
Agents and Chemotherapy 66 (2022).

[22] Z. Li, F. Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neural networks: Analysis,
applications, and prospects, IEEE Transactions on Neural Networks and Learning Systems 33
(2022) 6999–7019.

[23] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al., Kerastuner, https:
//github.com/keras-team/keras-tuner, 2019.

8

https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

	Introduction
	Material and Methods
	Dataset
	Deep learning model
	Hyperparameter Search
	Evaluation Metrics

	Results
	Final deep learning Model
	Training performance
	Classification Performance
	Conclusion and discussion


