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Abstract

Autism Spectrum Disorder (ASD) is a group of complex neurodevelopmental
disorders that affects about 1% of the world’s population, impacting the quality
of life of not only the diagnosed individuals but also their communities. Early
detection and intervention are paramount to limit its effect on a child’s development,
however overlap with other disorders and medical comorbidities make these tasks
challenging. The present study explores the use of a novel multimodal, interpretable
approach to characterize ASD children’s behavior in a naturalistic environment.
Spatial (real-time location tracking), audio and demographic data from children
in a classroom setting are integrated and analyzed to identify traits potentially
connected to ASD. Our findings point to the use of this type of approach as a
potential tool for screening individuals in a naturalistic setting, allowing for further
evaluation and, ultimately, earlier diagnosis by a clinician. Results show good
classification performance and suggest vocalization, speech, proximity and certain
movement-related features to be impacted in ASD.

1 Introduction

Autism Spectrum Disorder (ASD) is a developmental disability that is characterized by changes in
communication, social interaction and behavior. Challenges emerging from this neurodevelopmental
disorder influence the totality of an individual’s experience of life, with a markedly lower quality of
life at every stage [1]. Currently, it is estimated that over 75 million people worldwide are living with
this disorder, with 1 in every 36 children at the age of 8 years affected by it in the US [2]. Traditionally,
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ASD has been diagnosed with evaluations conducted by trained specialists, based on guidelines
such as the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and the
Modified Checklist for Autism in Toddlers (M-CHAT) [3]. However, this approach is not without
issues and despite numerous attempts to diagnose autism utilizing chemical and biological means, no
reliable biomarkers exist that could enable earlier diagnosis [4] as there is much to elucidate regarding
ASD’s etiology and pathogenesis.

Advancements in technology and machine learning (ML) offer a promising avenue to better char-
acterize this heterogeneous disorder. Noteworthy examples include the utilization of contemporary
clinical assessment data in a federated learning approach, which featured statistical learning classifiers
[5], and the application of deep learning to neuroimaging [6]. Moreover, the fusion of diverse data
types has shown the potential to further bolster predictive capabilities. A study by Kollias et al.
demonstrated that a multimodal data integration approach, incorporating eye-tracking, kinematics,
and electroencephalography (EEG), outperformed purely eye-tracking-based training in terms of
accuracy [7]. Nonetheless, it is important to acknowledge that the translation of ML research findings
into clinical outcomes remains a sizeable challenge, marked by factors such as limited sample sizes
and inconsistent findings [8].

In this work, we sought to adopt a holistic approach, capturing some of the complexities inherent to
interaction in real-world environments. We propose a multimodal, interpretable approach to analyze
spatial, audio and demographic data collected in a classroom environment which included children
with and without ASD. The goal of the present work is two-fold: (1) gain a better understanding of
ASD, and (2) identify features that could be further explored as potential (behavioral) biomarkers of
ASD.

2 Materials and Methods

The approach proposed here integrates three different types of data, which are carefully curated to be
used as input to a machine learning-based algorithm for data analysis (Figure 1). The different tasks
performed as part of this workflow are detailed subsequently.

Data collection

Spatial data

Audio data

Demographic data

Data preprocessing

Data cleaning

Data interpolation

Data denoising

Data fusion

Data analysis

Feature engineering

Data modeling

Feature importance

Figure 1: Overall workflow utilized in the present work.

2.1 Data collection

A total of 213 observations were used as input to the predictive models, further divided into 74
pertaining to individuals diagnosed with ASD and 139 from individuals with typical development
(TD). Observations were obtained from 44 children (21 TD and 23 ASD) from six different classrooms
who participated in a particular learning program between the years 2018 and 2022. Demographic
information was manually collected. Spatial and audio data were collected once a month for each
class, each instance spanning 1-3 hours and with a total average of 5 instances per class. Data
collection procedures adhered to ethical standards, with participation requiring written informed
consent from the parents or legal guardians of the children. Furthermore, our research protocol
fully complied with the guidelines set by the Helsinki Committee and received approval from the
University of Miami Social & Behavioral Sciences Institutional Review Board (IRB) under protocol
number #20160509.
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During data collection, children wore vests containing a LENA-SP audio recorder, which allowed
acquisition of audio data, and RFID tags on their left and right sides, allowing determination of
position and orientation. Vest wearing compliance rate exceeded 97%, with only a few isolated
instances of non-compliance [9]. Ubisense DIMENSION4 Radio Frequency Identification Real-Time
Location System with Research Upgrade was employed to track the real-time location of children
within classroom spaces. The classrooms are equipped with four radio cell sensors attached to the
corners of the classrooms that detect the location of the tags 2-4 times per second with an accuracy of
15-30 cm [10]. Location measurement was based on a xy coordinate system, where the origin (0,0)
was set as the sensor in the corner closest to the primary entrance. The LENA recorder captures the
surrounding sound during observations, in addition to a child’s vocalizations.

2.2 Data preprocessing

The spatial and audio data collected during classroom observations were preprocessed for downstream
analysis, including data cleaning, interpolation, denoising and fusion. Onset, offset and intensity of
each child’s vocalization were extracted using the LENA Pro pattern recognition software. Motion
data was interpolated to the precision of one-tenth of a second, orientation of subjects was determined,
and spatial separation between the left and right tags was computed from the real-time location
tracking data. To reduce measurement anomalies and data disturbances, Kalman filters were employed.
Finally, audio, spatial and demographic data were integrated for each individual subject.

2.3 Feature engineering

A total of 39 features across seven categories were extracted for each observation. Spatial and audio
features underwent a normalization process with robust min-max scaling techniques, ensuring that
their values fell within the ranges of -1 to 1 or 0 to 1 where appropriate. Features are described below.

• Demographic information. A variable encoding whether a child was monolingual or
bilingual was included.

• Movement. Stereotyped patterns of movement have been linked to autism. Three general
statistics of movement are thus computed: mean speed, speed variability (standard deviation),
and rotational speed variability. Additionally, to measure variability in larger intervals, we
calculated the proportion of location changes (leaving set 1-meter zones) to time.

• Proximity. The term "proximity" is used to denote individuals less than 1 meter apart [11].
Each individual could be in proximity of ASD children, TD children, and teachers. We
quantified the ratio of instances in which each specific group was found in proximity of the
subject relative to the aggregate instances of proximity involving any group.

• Social contact. Two individuals are considered to be in "social contact" if the separation
between them is between 0.2 to 2 meters and their orientations are within 45 degrees
of face-to-face contact [9]. A buffer of one second was provided to accommodate brief
interruptions. The proportion of time, average duration, and the longest period of social
contact were calculated. Additionally, the ratio of cumulative duration spent in social contact
with teachers, ASD and TD children in relation to the overall aggregate duration of social
contact was also computed.

• Approach velocity to social contact. This term denotes the speed of an individual in
motion (a maximum of 2.5 seconds) prior to engaging in social contact, relative to the initial
position of the counterpart participant. Nine features were calculated within this category
depending on who is involved in the contact: 3 capturing the average approach velocity
towards each type of individual (i.e., teacher, ASD child, TD child), 3 quantifying the
variability in approach velocity exhibited towards each group, and 3 gauging the proportion
of approaches directed at each type of individual relative to the total times of contact with
that group. Additionally, 3 global features were obtained, representing the overall average
approach velocity, the proportion of approach to social contact events, and the mean of the
three average approach velocities.

• Vocalizations. The mean, variability, and maximum of peak intensities were calculated.

• Speech. We introduce the concept of "speaking events”, indicated by semi-continuous
sequences of vocalizations distinguished by gaps of less than one second between successive
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vocal elements. We also further subdivided these events, creating a more specific category
within the domain of speaking events called “response”. This grouping identifies instances
where a child’s speaking event is preceded by another individual’s speaking event within
a maximum time frame of six seconds, with both individuals engaging in social contact
for the duration of the time gap. The mean and maximum duration of speaking events
were computed, as well as the cumulative duration of speech vs. the overall duration of
social contact. Additionally, we explored two response-related features: one that analyzes
responses in relation to the total speaking duration and another that calculates the average
time it takes for a child to respond.

2.4 Data modeling

A comprehensive set of interpretable ML models were built using as input the features described
in 2.3, including: K-Nearest Neighbors (KNN), logistic regression (LR), ridge regression (RR),
decision trees, random forests, extra-trees, gradient boosting, AdaBoost, and support vector machines
(SVM). All models were implemented employing the scikit-learn library [12]. Model performance
was optimized through a grid-search hyperparameter tuning process. Additionally, R was utilized to
train a generalized linear model (GLM) on all features and extract p-values to determine which of
these were statistically significant at α=0.05.

It is worth noting that LR and RR classify an observation by estimating the probability of it belonging
to the positive class. Thus, an observation is classified as positive if the probability is greater than or
equal to a default threshold, and as negative otherwise. Using a default value for the threshold may
become problematic in situations in which the dataset used as input is imbalanced. As such, in the
current scenario, the regression models could suffer from a bias towards predicting the class with
the greatest number of observations. To minimize the amount of false negatives, we introduced an
additional hyperparameter termed the "threshold." This hyperparameter serves the crucial function of
adjusting the minimum required probability for the model to classify an observation as the positive
class, thus contributing to optimal predictive performance.

Traditional cross-validation could not be applied to our unique dataset. For example, in the standard k-
fold CV, data are divided into k portions and a randomly selected subset of the data is designated as the
validation set, while the model is trained on the remaining portions. Then, the model’s performance
is evaluated utilizing this validation set to ascertain accuracy. This process is repeated k times and
performance metrics are averaged to prevent selecting a model that performs optimally for one
validation set and which may not generalize well. However, even if employing the stratified version
of this validation technique, there is a high possibility for an individual child’s data observations to
be present in both the training and validation sets, thus introducing a bias into the model’s evaluation.
The metrics would then reflect a model’s proficiency in predicting specific children’s attributes rather
than its capability to discern autism-related features. Hence, in this work, we propose the use of what
we denominated leave-one-kid-out cross-validation (LOKOCV). Building upon the concept of leave
one out cross-validation CV (LOOCV), a subtype of k-fold CV in which k=number of total input
observations, we introduced a unique adaptation that changes what the term "one" represents. In our
method, we replaced the exclusion of a single data point with the exclusion of an entire individual.
Essentially, all data points associated with a specific child are omitted from the training set and
designated as the validation set. This process is iteratively performed for each child within the dataset,
ensuring that an individual child’s data samples are not part of both the training and validation sets.
In our particular experimental setup, the LOKOCV involved 44 folds, with each fold including data
pertaining to 43 kids for the training set while the observations of 1 child are reserved for validation
purposes.

3 Results

3.1 Classification performance

Models were evaluated using four different metrics: accuracy, F1 score, area under the receiver
operating characteristic curve (AUROC) and true positive rate (TPR). Given the imbalance in our
dataset (139 TD vs. 74 ASD observations), our primary focus was on optimizing the F1 score,
which measures both precision and recall, and AUROC, which measures the ability of a model to
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Table 1: Model performance

Model Accuracy TPR F1 score AUROC

Logistic Regression 0.79 0.82 0.73 0.79
Support Vector Machine 0.80 0.70 0.71 0.78

Ridge Regression 0.76 0.84 0.71 0.78
Decision Tree 0.78 0.68 0.68 0.76

Gradient Boosting 0.78 0.62 0.66 0.74
AdaBoost 0.76 0.55 0.61 0.71

Random Forest 0.78 0.51 0.61 0.71
Extra-Trees 0.77 0.50 0.60 0.70

K-Nearest Neighbors 0.73 0.42 0.50 0.65

discriminate between the two classes. TPR was important to assess the performance of the proposed
approach in correctly identifying ASD individuals.

Table 1 shows the best metrics for each of the optimized models built in this work, with three models
performing remarkably better than the rest: LR, RR, and SVM. Notably, all three of these models
employed a linear decision boundary, suggesting a mainly linear relationship between input features
and the dependent variable. LR emerged as the top-performing model, achieving an F1 score of 0.726
and a AUROC of 0.793. Closely behind, SVM and RR obtained F1 scores of 0.712 and 0.705 and
AUROC values of 0.779 and 0.775 respectively. The optimal configuration for LR involved a liblinear
solver with an L1 penalty and a threshold of 0.34, SVM performed best with a gamma-scaled linear
kernel, and RR achieved the best results employing an SVD solver and a threshold of -0.27. In terms
of TPR, RR performed the best, reaching a value of 0.838. LR and SVM achieved a TPR of 0.824
and 0.703 respectively. Higher TPR values for LR and RR could be attributed to the optimization of
the "threshold" hyperparameter (see 2.4).

3.2 Feature importance

Both LR and RR models operate by modifying the positive class probability through the application
of specific weights to input features. As such, the magnitudes of these weights offer valuable insights
into the relative importance of individual features in making predictions, which we will analyze next.

Table 2 includes the 10 highest weighted features of the LR model. In particular, vocalization features
emerge as the most prominently weighted attributes, suggesting a substantial disparity in vocalization
intensity between ASD and TD individuals. Additionally, speech-related features, particularly those
associated with duration, are within the next most highly ranked features. Proximity features also
command considerable weight, especially in relation to ASD children and teachers. Similarly,
features related to the duration of social contact capture attention. Lastly, a single movement feature,
specifically speed variability, emerges as the 10th highest ranked feature. A similar narrative unfolds
in the case of RR. The top six features remain consistent with those found for LR, reinforcing the
importance of vocalizations, proximity, and speech-related features. However, a noteworthy addition
is the appearance of approach velocity to children, displacing the lone movement feature from the top
10. Additionally, the ratio of social contact with ASD compared to total social contact replaces the
proportion of time allocated to social contact as a highly ranked attribute in the model.

Next, we sought to calculate feature-specific statistical significance information. For this purpose, we
built a GLM (which in practice was set to be a LR model) employing all features as input in R. At a
significance level (α) of 0.05, we observed that seven features had statistically significant p-values
(Table 3). These features fall into five different categories, namely, vocalization, proximity, speech,
movement and approach velocity. Only two categories (vocalization and speech) contain more than
one statistically significant attribute. It is worth noting that, while the number of social contact events
the subject approached and the average speed of movement were not features that ranked within the
top 10 for LR and RR, in the GLM model they exhibited statistical significance. Overall, the results
of this analysis reinforce the notion of vocalization, speech, and proximity being impacted in ASD.
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Table 2: Top 10 Logistic Regression weights

Feature Category Weight

Average peak decibels Vocalizations 2.99
Standard deviation of peak decibels Vocalizations 2.84

Proximity ratio to ASD group Proximity 1.77
Average speaking duration Speech 1.59
Longest speaking duration Speech 0.92
Proximity ratio to teacher Proximity 0.82

Duration ratio of speaking contact Speech 0.41
Ratio of social contact to time Social Contact 0.39

Average duration of social contact Social Contact 0.39
Standard deviation of movement speed Movement 0.36

Table 3: Statistically significant features

Feature Category P-value

Average peak decibels Vocalization 0.00000577
Standard deviation of peak decibels Vocalization 0.000211

Proximity ratio to ASD group Proximity 0.000456
Average speaking duration Speech 0.007525
Average movement speed Movement 0.027029

Approach ratio Approach Velocity 0.031794
Longest speaking duration Speech 0.033559

4 Conclusions and Future Work

Our research has showcased the promising capabilities of statistical ML models to deepen our
understanding of ASD. This work proposed a novel multimodal approach that represents a first step
toward the development of tools that could potentially be used for screening individuals in naturalistic
settings (e.g., a classroom environment). By detecting patterns that could be linked to ASD, an
individual could be referred for further evaluation to ensure prompt diagnosis and intervention. It is
worth noting that no protected health information is collected as part of this study and that all data
collected are de-identified prior to data preprocessing and analysis, thus limiting any concerns that
may arise regarding privacy and security. Although referring individuals for additional testing may be
felt as potentially stigmatizing to some, given the impact of early intervention on child development,
we believe that contributing to early diagnosis outweighs the potential risks.

Our models achieve performance values of about 80% and flag interesting features for further
exploration, including speech-related attributes, proximity patterns, and social contact duration,
contributing toward pinpointing specific behaviors in autism and, consequently, to the characterization
of this disorder. Nevertheless, there is still substantial work ahead. Our approach can be further
refined through the optimization of existing features, the extraction of additional attributes, and the
integration of other data types. Moreover, the features identified to be relevant by the models will
require further research to solidify these into well-defined behavioral biomarkers. For this purpose,
statistical analyses will be performed. Furthermore, additional data will be collected to validate the
proposed model and its findings. Finally, our models have paved the way for more complex machine
learning techniques to deepen our comprehension of ASD, for example, combining latent space
representations and classical machine learning or employing deep learning to detect more complex
patterns.
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