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Abstract

In the domain of machine learning, one persistent challenge is the availability of
ample data, especially pertinent to computer vision. Moreover, this challenge is
amplified within the realm of remote sensing, where annotations for addressing
problems are frequently scarce. This manuscript critically examines the daunting
task of monitoring a geophysical phenomenon —landslides— within the Peruvian
landscape, a nation profoundly impacted by such events on a global scale. In this
paper, we present three contributions in that direction.
Our first contribution is to expand a well-known satellite imagery dataset targeting
landslides. The nucleus of this foundational dataset originates from Asian territo-
ries, comprising 3799 meticulously annotated images. However, recognizing the
distinct geospatial dynamics of Peru, we embarked on a rigorous exercise to aug-
ment this dataset with 838 local scenarios. These additions maintain congruence
with the original dataset in terms of attributes and configuration, thereby ensuring
both replicability and scalability for future research endeavours.
Our second contribution is an exhaustive assessment of various semantic segmen-
tation models. At the heart of our experimentation lies the U-net architecture,
bolstered by the Weighted Cross Entropy + Dice Loss —a loss function acclaimed
for its efficacy in segmentation tasks with imbalanced data sets. The empirical
findings are illuminating: a rudimentary U-net architecture exhibits a formidable
F1-Score of 75.5%, transcending the benchmark score of 71.65% set by the original
dataset.
Our third and final contribution is the comprehensive research framework developed
for data acquisition, processing pipeline and model training/evaluation. Given this
framework has the potential to drive a general applicability of segmentation systems
to landslide monitoring systems, and to have a broader reach to the academic
community and governmental stakeholders in Latin America and worldwide, we
will be making all scripts and experiment details available upon publication, thus,
hoping to foster an environment for collaborative scrutiny, discourse, and further
advancement.

1 Introduction

Landslide phenomena, undoubtedly perilous geomorphological events, present pronounced challenges
in mountain regions worldwide[1]. Particularly, the topography and settlement patterns of Peru render
it vulnerable, with numerous establishments precariously situated in high-risk zones. While the
multi-faceted intricacies of landslide assessment often impede holistic evaluations, the advent of
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satellite imagery—specifically through platforms like Sentinel2 and Alos Palsar—offers a promising
avenue for discerning and predicting such geological upheavals.

The crux of this research lies in forging a rigorous analytical framework designed to both segment
and detect landslides autonomously through the prism of these satellite imageries. By harnessing
advanced computational vision techniques and delving deep into machine learning paradigms, we
aspire to attain a granular classification of the impacted regions in the montane rainforests of Peru,
which is noteworthy, only second to Colombia in the Americas in terms of landslide susceptibility[2].

In recent years, Earth Observation (EO) has emerged as a pivotal discipline impacting various
interdisciplinary research areas such as climate change, risk and disaster management, and foresight
analysis[3]. Its transformation can be attributed in part to platforms such as Google Earth Engine
(GEE)[4] representing a significant milestone in EO, providing researchers with unparalleled access
to extensive spatial data repositories and robust computational resources for real-time processing.
This groundbreaking innovation in EO has democratized access to expansive data repositories,
simultaneously enabling sophisticated machine learning procedures[5]. Our research objective, in this
context, is two-fold: geographically, to be able to pinpoint vulnerable zones, pre and post-landslide
occurrences; and from a computer vision perspective, there is an emphatic focus on architecting an
avant-garde model built on convolutional neural networks. This model is envisaged to streamline the
semantic segmentation of satellite imagery, thereby bolstering the efficacy of surveillance systems.

To comprehend the magnitude and gravity of landslides, one must recognize them as unrestrained
terrestrial movements of both soil and bedrock, manifesting formidable geological threats[6]. Their
monitoring and the subsequent identification of susceptible regions are paramount for effective
hazard mitigation. The Unified Global Landslide Database (UGLD) as curated by Gomez (2023)[2]
sheds light on this, chronicling 37,946 landslide events and an alarming tally of 185,753 fatalities
spanning 161 countries from 1903 to 2020. Within this global purview, Peru’s vulnerability stands
out, ranking third in landslides per 1000 km2. Supplemental data sourced from INDECI accentuates
this, highlighting that between 2003 and 2021, Peru witnessed 8,347 landslide-related emergencies
culminating in 475 tragic fatalities[7].

2 Dataset

Landslides, with their socio-environmental repercussions, have prominently emerged as a critical
area of interest within geospatial research. The assimilation and analytical scrutiny of satellite-
derived datasets have become an indispensable tool for discerning and monitoring these geophysical
occurrences. Given this backdrop, certain dedicated datasets have been architected, specifically
aiming to amplify our comprehension and prognostic abilities regarding global landslide occurrences.
Two datasets, namely "Landslide4Sense" (L4S) and our Peruvian-adapted counterpart "L4S-PE",
warrant particular attention for their comprehensive satellite image capture and labeling.

2.1 The Landslide4Sense (L4S) Dataset

The L4S dataset[8] encompasses landslide imagery harvested from four geographically distinct
regions: Iburi-Tobu in Japan, Karnataka in India, Bagmati in Nepal, and Taitung County in Taiwan.
This compilation aggregates 3,799 image patches, devoid of georeferencing but integrating 14 spectral
bands—comprehensively combining Sentinel-2 spectral bands with elevation data from the ALOS
PALSAR satellite[9]. An inherent need to harmonize the spatial resolution of the incorporated
satellite products led to a standard pixel size recalibration. Subsequently, every band was resized
to ensure a 10-meter per pixel resolution, resulting in image dimensions of 128x128 pixels. These
images are meticulously classified under two categories: landslide presence (1) and absence (0).

2.2 The L4S-PE Dataset

Drawing inspiration from the original L4S dataset —primarily oriented towards the Asian context—
L4S-PE was conceived to cater to the unique landscape of the Peruvian forest. Retaining the
attributes of L4S, including the 12 bands from the Sentinel-2 and the elevation band from the Alos
Palsar, the creation of L4S-PE employed a CloudSen12-based pipeline[10]. This approach facilitates
the augmentation of a global dataset with local idiosyncrasies, encompassing landslide detection

2



in specified Peruvian regions, satellite image acquisitions, semi-automated labeling, and sample
standardization for segmentation tasks.

2.2.1 Geographic Focus

The analytical focus hones in on three central Peruvian regions: Junin, Pasco, and Huánuco, situated
to the east of the Andes where highlands transition into the rainforest. Dominated by wooded terrains,
these regions optimize the visual interpretation of optical remote-sensing imagery. Notably, while
regions juxtaposed between coastal areas and mountain ranges frequently experience landslides, the
aforementioned regions were strategically selected based on their geomorphological characteristics.

2.2.2 Image Fragment Selection

For the raw data composition of L4S-PE, 1,000 Regions of Interest (ROIs) were delineated across the
study area, each spanning 150 x 150 meters. These ROIs were ascertained using visual inspection
methodologies on the Google Earth platform, cross-referencing with pre-2018 landslide occurrences.
Despite the inherent resolution disparities across the bands, a homogenization process was executed
to maintain a consistent spatial resolution of 10 meters. Post a rigorous visual quality assessment, the
dataset was filtered to 838 image fragments, removing images plagued by cloud cover, sensor noise,
or incongruent landscape features.

2.2.3 Labeling Procedure

The image labeling operation leveraged a refined version of the "Intelligence foR Image Segmentation"
(Iris)[11] active learning software. This tool streamlines manual image annotation, offering flexibility
in analyzing varying band combinations. Each image fragment, measuring 150x150 meters, offers
spatial context for the targeted 128x128-meter area. Upon concluding the annotation phase, labeled
outputs were exported in the HDF format, primed for integration with machine learning techniques.

2.2.4 Comparative Analysis: L4S vs. L4S-PE

It is crucial to highlight that the geographic characteristics of the L4S patches differ significantly
from those of L4S-PE, particularly regarding precipitation, geomorphology, and landslide triggers,
as detailed in the L4S study[8]. This variability, coupled with the limited availability of landslide
databases for machine learning modeling in Peru, led to the initiation of a local database. This
endeavor aims to broaden the understanding of the characteristics of the Andes, a task also undertaken
by the HR-GLAD database[12]. However, these latter studies did not include the Andean mountain
range in their analyses. In this context, Figure 1 illustrates the data sources for each database (L4S
and L4S-PE), indicating the number of patches analyzed and outlining the download process for
creating the databases used in this research.

Figure 1: (a) shows the data source, emphasizing the own database (L4S-PE). (b) shows the down-
loading process and integration to create the two databases evaluated

A comparative exploration was performed between L4S and L4S-PE datasets. Post min-max nor-
malization, pixel distribution across each band was evaluated in the Figure 2. A majority of the
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spectral bands exhibited analogous behaviors, with notable variances, especially in Band 1 (Aerosol).
Statistical insights revealed a class distribution skewness in both sets: L4S presented a landslide area
of 137.56 km² (2.21% landslides, 97.79% non-landslide) while L4S-PE showed 24.71 km2 (1.8%
landslides, 98.2% non-landslide). Despite these disparities, the inherent similarities between the
datasets affirm their combined utility in predictive modeling endeavors as we can see in the table 1.

Table 1: Distribution of classes by database, area in square metres of landslides and number of
patches for each database. Each patch has 128x128 pixels and 10 metres of spatial resolution.

Source Landslide area (km2) % Landslide / No landslide Number of patches
L4S 137.56 2.21 / 97.79% 3799

L4S-PE (own) 24.71 1.8 / 98.2% 838
L4S + L4S-PE 162.27 2.14 / 97.86% 4637

Figure 2: Comparative analysis evaluating distribution and variability for each spectral band values
across the datasets L4S and our L4S-PE

By showing similar behaviours in the distributions of both databases, these can be put together in a
single database for more extensive modelling purposes. Also, in this study, experiments are performed
using different combinations of bands that prioritise the highest resolution (10 metres) corresponding
to bands b2, b3, b4, b8, b13 and b14, which, as can be seen in the figure, have no major difference in
their distributions.

3 Methodology

In this investigation, our focal point lies in the comparative efficacy of various deep learning models
tailored for semantic segmentation. Primarily, these models revolve around the U-net framework[13],
augmented by different encoder architectures. The study undertook experiments utilizing two distinct
datasets: L4S and an amalgamation of L4S and L4S-PE. Two band combinations were critically
evaluated—one encompassing all 14 spectral bands, and another emphasizing the six bands with
an original resolution of 10 meters, requiring no down-sampling. These datasets were subsequently
stratified into training and validation subsets, and multiple metrics were computed to assess the model
performance.
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3.1 Loss Functions for Segmentation

• Binary Cross-Entropy (BCE): This quantifies the divergence between the predicted and true
probability distributions for individual pixels.

• Weighted Cross-Entropy (WCE): Operating on the same foundational principles as BCE,
this introduces a weighting mechanism to address the class imbalance between landslide
and non-landslide pixels.

LWCE = − 1

N

n∑
i=1

(βYi log Ŷi + (1− Yi) log(1− Ŷi)) (1)

• Dice Loss: This metric gauges the overlap between the predicted and reference segmentation
masks.

LDice = 1− 2× |X ∩ Y |
|X|+ |Y |

(2)

• WCE-Dice Loss: By synergizing the weighted cross-entropy and Dice loss, this function
aims to optimize model performance.

LWCE−Dice = (1− α)LWCE + αLDice (3)

3.2 Evaluation Metrics

• Precision: Denotes the proportion of accurately detected landslide areas.

• Recall (Sensitivity): It ascertains the fraction of total landslides in an image that were
accurately identified.

• F1-score: Offers a harmonic mean of precision and recall, thereby providing a consolidated
metric.

• IoU (Jaccard Index): Quantifies the similarity and diversity between two datasets.

3.3 Experimental Configuration

The computational environment was built with Python 3.8.10 running on Ubuntu 22.04LTS, using an
NVIDIA RTX 3070 GPU (16 GB RAM). The deep learning apparatus employed included PyTorch
and Pytorch Lightning[14], leveraging the CUDA 12.1 parallel computation platform. Regarding
the data implementation, the imagery is sourced from the Google Earth Engine, specifically from
Sentinel-2 and Alos Palsar satellites. We analyzed 128x128 pixel images spanning 14 spectral bands
from the period 2018-2022, aggregating to a comprehensive 4637 patches. The task of landslide
identification was construed as semantic segmentation. Experiments were carried out with the L4S
dataset and its combined form with L4S-PE, employing varying spectral band sets. The dataset was
separated into experimental subsets—80% allocated for training and 20% for validation, ensuring
reproducibility through a consistent random seed.

3.4 Experiments

Within the ambit of landslide segmentation model evaluation, datasets L4S and L4S-PE were deployed,
showcasing sample images that delineate the proportions of landslide and non-landslide areas. As
mentioned above, experimentation was orchestrated using the PyTorch Lightning and Google Earth
Engine (GEE) frameworks. Depending on the specific experiment, either all 14 spectral bands were
selected or only those with an intrinsic resolution of 10 meters. Each image was subjected to min-max
normalization, scaling values within the 0 to 1 range.

The datasets were bifurcated into training and validation subsets, adhering to an 80/20% ratio. The
U-net architecture was the base of all experimental paradigms, with Resnet34 and MobilenetV2
as foundational backbones. The Adam optimizer was embraced with a learning rate of 10−3, and
the loss used was WCE-Dice. Learning rates were recalibrated every 30 epochs, and given the
data imbalance, a heightened weight was accorded to the landslide class. Should no enhancements
materialize after 10 epochs, the model manifesting the lowest validation loss was selected. These
experiments are available to see in the Wandb6.
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3.5 Results

In our investigation of semantic segmentation in Sentinel2 and Alos Palsar satellite imagery, we
evaluated several deep learning models for landslide detection effectiveness. Initially, our evaluation
focused on experiments using the L4S dataset, as shown in the table. Our results indicate that
working with 14 spectral bands yields slightly better performance compared to using only 6 bands.
Furthermore, with an F1 score of 0.755, the Unet (Vanilla) architecture is superior to more complex
ones, demonstrating an advantageous trade-off between accuracy and recall. Furthermore, the low
Dice-WCE value suggests effective class imbalance management. We also note that an IoU close to
0.60 means a substantial overlap between model predictions and their corresponding labels.

On the other hand, the use of the combined L4S and L4S-PE databases, as can be seen in the
table, shows a rather similar, although slightly lower, performance, reaching an F1 score of 0.719.
Furthermore, despite the high F1 and Accuracy scores, the performance of the L4S and L4S-PE
databases is slightly lower.

Furthermore, despite the high F1 and Accuracy metrics, there is a considerable lag in IoU scores,
which is an opportunity to refine the capture of class overlap and to further augment the databases.
The following tables list the main metrics and cumulative losses across all the experiments analysed,
while figure 3 presents an overview of the visual results.

Table 2: Performance metrics of evaluated models on the validation set of the L4S database
Metrics Loss function

F1-score Precision Recall IoU Dice-WCE WCE Dice

6b
Unet (Vanilla) 0.747 0.761 0.739 0.600 0.223 0.159 0.287
Resnet34 0.731 0.784 0.691 0.581 0.238 0.177 0.298
MobilenetV2 0.718 0.687 0.758 0.565 0.256 0.202 0.309
Segformer 0.702 0.750 0.672 0.546 0.261 0.196 0.326

14b
Unet (Vanilla) 0.755 0.781 0.735 0.611 0.215 0.157 0.273
Resnet34 0.734 0.785 0.695 0.585 0.233 0.174 0.292
MobilenetV2 0.723 0.735 0.716 0.571 0.246 0.184 0.308
Segformer 0.714 0.743 0.694 0.559 0.259 0.208 0.310

Table 3: Performance metrics of evaluated models on the combined validation set of the L4S and
L4S-PE databases

Metrics Loss function
F1-score Precision Recall IoU Dice-WCE WCE Dice

6b
Unet (Vanilla) 0.714 0.749 0.687 0.559 0.256 0.191 0.321
Resnet34 0.695 0.742 0.659 0.537 0.278 0.223 0.333
MobilenetV2 0.688 0.751 0.640 0.528 0.286 0.237 0.335
Segformer 0.669 0.712 0.639 0.507 0.299 0.245 0.353

14b
Unet (Vanilla) 0.719 0.744 0.701 0.566 0.251 0.186 0.317
Resnet34 0.705 0.737 0.681 0.548 0.265 0.202 0.327
MobilenetV2 0.693 0.747 0.654 0.535 0.277 0.216 0.339
Segformer 0.681 0.727 0.648 0.521 0.288 0.230 0.347

Figure 3: Comparative performance of the top-performing model (Unet-Vanilla) in identifying
Landslide and Non-Landslide areas, featuring examples of RGB patches and corresponding ground
truth
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4 Cloud-based monitoring system framework

4.1 Temporal analysis

The focus of the current study is the resolution of a task within the domain of computer vision.
Nonetheless, the efficacy of a monitoring tool is contingent upon temporal variables. For the landslide
detection task of this research, we use Sentinel-2 imagery providing new observations every 5 days
for a targeted area and limited with the cloud cover which can impede the temporal resolution of
image acquisition [15].

Figure 4 elucidates the temporal analysis of imagery from different years over an area of interest,
revealing the alterations in surface coverage in locales that have experienced landslides. For each event,
ante- and post-event imagery are displayed, thereby integrating a temporal factor into the satellite-
based assessment and detection of landslide occurrences. The model used for these predictions were
U-net Vanilla with 6 bands and using the full dataset (L4S + L4S-PE) trained previously (Table 3).

Figure 4: Comparative temporal analysis of various Regions of Interest (ROI) within the Peruvian
region

4.2 Monitoring system

The adoption of remote sensing techniques for the monitoring of geographic and environmental
phenomena has witnessed an exponential increase internationally [16, 17, 18, 19]. Geographical
Information Systems (GIS) have progressively evolved to include cloud-based analyses of satellite
imagery. The current investigation leverages the capabilities of Google Earth Engine (GEE), a pio-
neering cloud-based platform that streamlines cloud service integration, simplifies the download and
preprocessing of imagery, and underpins AI-driven segmentation techniques for more sophisticated
monitoring endeavors.

4.2.1 Download and imagery processing

Satellite imagery provides a unique view of the terrain and allows early detection of potential
landslides. This study works with GEE, which allows filtering and selection tools based on parameters
like dates, cloud cover and localization to download Sentinel-2 (L1C) images with a spatial resolution
of 10 metres which are available every 5 days for the same location, limited only to the cloud cover
of the scene at the time they were captured. On the other hand, Alos Palsar images are not directly in
GEE but can be stored in a cloud bucked like Google Cloud Storage (GCS) in Geotiff format.

Working with the Pytorch Lightning framework, it facilitates the dataloader and splitting for an area
of interest (aoi) to monitor and links to the pre-trained model to create a map of landslide predictions.

In cases when the area is bigger than the original dimensions, we implemented a stitching process
that resembles the prediction in the same size of the aoi evaluated. This process exports the results
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in a binary raster with Cloud Optimized Geotiff (COG) format that facilitates the integration with
viewers.

Figure 4.2.1 shows the workflow used in this research considering the main parts, data processing,
model training and, analysis and application.

Figure 5: Workflow used of the Landslide Detection System using Sentinel-2 and Alos Palsar Imagery

4.2.2 Cloud-Based integration

To establish a dynamic and scalable landslide monitoring system, the trained semantic segmentation
models—designed to differentiate between landslide and non-landslide classes—are securely housed
within Google Cloud Storage. This allows for robust and accessible data management. Similarly,
other studies have utilized cloud-based architecture and on-the-fly processes with Google services,
demonstrating the effectiveness of these approaches in environmental analysis and near real-time
monitoring [20]. The backend infrastructure, potentially developed using Google Cloud Functions or
analogous cloud services, acts as an intermediary between user interactions or system-driven triggers
and the execution of the model’s processes. This serverless architecture affords an economical
scalability model, engaging resources solely during model inquiries and thus adeptly managing
fluctuating workloads without persistent server upkeep.

The automation of the landslide detection workflow leverages satellite data acquisition and processing,
utilizing scheduling services to periodically invoke GEE for the latest Sentinel-2 and Alos Palsar
imagery pertaining to predefined areas of interest.

Upon the detection of new imagery, the pipeline activates a sequence of prearranged cloud functions
to preprocess the data, ensuring compatibility with our deep learning models. The images, once
processed, are directed through the semantic segmentation models to ascertain potential landslide
areas. This system is not only streamlined for efficiency but also strategically reduces the necessity
for manual oversight, thereby expediting the detection process.

It is envisaged that the landslide predictions formulated by the models will be systematically archived
in Google Cloud Storage. In doing so, we guarantee that the predictive data remains promptly
accessible for in-depth analysis and is readily amenable to integration with web-based visualization
interfaces utilizing the Cloud Optimized Geotiff (COG) standard. Consequently, this would furnish

8



end users, such as disaster response teams, with the capabilities to swiftly visualize and react to
landslide incidents.

5 Conclusions

In the continuously evolving field of remote sensing, databases such as Landslide4Sense, which
contains pixel-accurately labeled satellite imagery sourced from Sentinel-2 and Alos Palsar, stand
as a testament to the power of data-driven solutions. This research elucidates that the fusion of
additional data can profoundly amplify the scalability and replicability of machine learning models,
rendering them applicable across variegated geographical terrains. This synthesis fosters algorithmic
generalization, wherein the resampled data with a 10-meter resolution astutely discerns the nuanced
morphological facets of landslides.

Nevertheless, one cannot overlook the intricacies introduced by cloud cover, which often acts as an
impediment, complicating data normalization and annotation endeavors. Within the pantheon of deep
learning architectures, our chosen U-net model emerges, boasting an F1-score of 75.5% over the
71.65% of the article that used only L4S database. This performance metric, achieved by harnessing
all 14 spectral bands and utilizing a synergistic blend of Dice Loss and Weighted Cross-Entropy
(WCE) loss functions, sets a benchmark in landslide identification.

For comparative analysis, other encoder structures—namely Resnet34, MobilenetV2, and Seg-
former—were subjected to evaluation, grounded on pivotal metrics encompassing F1-score and IoU
reaching 75.5% and 56.6% respectively. Among these, U-net’s superior efficacy in landslide detection
underscored the indispensable value of meticulously labeled datasets.

A salient observation was the efficacy of the amalgamated loss function of Weighted Cross-Entropy
(WCE) and Dice, proving especially potent for imbalanced data. Notwithstanding the robustness
these models exhibit for specific geographical realms, their applicability across diverse geographies
remains to be evaluated. Adaptations to geographical conditions and temporal shifts, like seasonal
transitions, are influential for the model’s accuracy.

While the prowess of deep learning algorithms is undeniable, their true potential remains tethered to
the availability of public annotated imagery. This scarcity underscores the imperative to continually
augment and refine datasets, which would catalyze the precision and performance of these models in
real-world applications.

6 Code Availability

The code required for database generation, associated resource downloads for each ROI, annotation
creation, deep learning model training, application construction, and publishing is open-source and
available on Github at https://github.com/ryali93/lanslide4sat_pl. Additionally, the evaluated metrics
from all conducted experiments are stored and can be accessed via the Weight & Biases tool, hosted
on the following web repository: https://wandb.ai/ryali/lanslide4sat_pl.
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