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Abstract

The automatic classification of non-functional requirements helps to reduce time
and effort for the stakeholders. Several techniques have been used for this task,
including the latest techniques in Machine Learning (ML) and Natural Language
Processing (NLP), such as pre-trained models, with promising results. This research
aims to analyze the performance metrics to classify requirements into sub-classes
of non-functional type. Six distinct algorithms, including both traditional machine
learning (ML) and deep learning (DL), were trained using a Spanish-translated
PROMISE NFR dataset to assess and compare their performance outcomes. The
findings reveal that Support Vector Machine (SVM) with Bag of Word technique,
and fastText overperformed the other algorithms. However, fastText stands out
between the two due the ease of implementation and the absence of data pre-
processing.

1 Introduction

Non-functional requirements (NFR) significantly contribute to the overall quality of software. The
automatic classification of NFR offers several benefits, including a reduction in stakeholder effort, de-
creased stakeholder involvement, real-time classification, and simplified identification of stakeholders
with expertise, among others. The automatic classification of non-functional requirements has been
extensively studied Binkhonain and Zhao [2019], Tóth and Vidács [2018b,a], Haque et al. [2019],
Khatian et al. [2021]. As requirements are expressed in natural language, several NLP techniques
have been used in this process in the last years with promising results. However, there is a lack of
analysis for non-functional requirements in others languages. Analyzing requirements in the language
they were originally written contributes to the quality of the requirements. In the most recent analysis
published by ’Instituto Cervantes’ for 2022, the Spanish language ranks as the second most widely
spoken native language, representing around 6.3% of the global population Instituto Cervantes [2022].
Given the importance of the Spanish language, it’s important to direct our focus on this language in
the field of requirements engineering (RE).
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In recent years, there has been an accelerated development concerning Deep Learning (DL) for NLP
(e.g., large language models), which makes it necessary to continue the evaluation and comparison
of the new models with traditional ones. We will refer to the traditional algorithm as ’shallow ML
algorithm’, encompassing simple neural networks and algorithms such as Naive Bayes (NB) or
Support Vector Machine (SVM), according to Janiesch et al. [2021]. Prior to the rise of neural
networks for NLP, shallow ML algorithms in combination with NLP techniques (such as tokenization,
stemming, lemmatization, text vectorization) obtained good results on classification, with SVM as
the most popular Binkhonain and Zhao [2019]. In addition to that, the use of n-grams could have
an impact on performance results when combined with other NLP techniques. Zheng [2019]. Since
2017 with the appearance of the transformers architecture (based on neural networks) Vaswani et al.
[2017] and the transfer learning application in NLP, pre-trained models has appears with positive
findings. Some popular models are based on Bert Devlin et al. [2018] (with billions of parameters)
and trained with large corpus in several languages.

In this research, we compare several models based on Machine Learning (ML) algorithms and NLP
techniques for automatic non-functional requirements classification to find the best combinations,
focus on requirements written in Spanish. The main contributions of this paper are:

• A quantitative comparison of performance metrics to compare the shallow and DL algorithms
for NFR classification.

• The use of pre-trained models (e.g., BETO) on NFR classification, trained with Spanish
corpus.

• This paper also serves as a tutorial for the classification of non-functional requirements
written in Spanish.

2 Related Work

Several studies haven been used ML algorithms to improve the automatic classification of NFR Rah-
man et al. [2019], Tóth and Vidács [2018a], Baker et al. [2019], Haque et al. [2019], Khatian
et al. [2021], Dias Canedo and Cordeiro Mendes [2020]. Binkhonain and Zhao (2019) provide a
comprehensive review of 24 articles that employ ML algorithms to identify non-functional require-
ments Binkhonain and Zhao [2019]. López-Hernández et al. (2021) also performed a more recent
review of requirements classifications, analysing 14 studies between 2016-2020. They found that
PROMISE NFR is the database most used, NB and SVM as the most used algorithms for shallow
ML and Convolutional neural network (CNN) for neural network and half of the studies focused only
in NFR classification López-Hernández et al. [2021]. In Iipinge and Hu [2023], challenges such as
lack of training and evaluation data are outlined, and recommendations are provided, such as the
utilization of both ML and NLP, to analyze security features Iipinge and Hu [2023].

Few studies of requirements in different languages of English have been found. Arabic language Al-
sawareah et al. [2023] and Chinese language Alsawareah et al. [2023] are examples of studies on
others languages. Regarding to requirements written in Spanish, in our previous research we translated
the PROMISE dataset and explored the classification of requirements in functional and non-functional,
finding that the shallow ML algorithms outperform DL algorithms. In this research, we used the
translated PROMISE dataset to train several algorithms to analyse the automatic classification of
NFRs in the Spanish language.

3 Research Design

3.1 Research Questions

• RQ1: How do different combinations of text vectorization techniques and ML algorithms
impact the performance of classifying non-functional requirements in sub-classes?

• RQ2: How does the use of Bigram/Trigram in text vectorization affect the classification
results in Shallow ML algorithms?

• RQ3: Does the DL models overperform the Shallow ML algorithms?
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3.2 Dataset

The PROMISE NFR is one of the 89 datasets of the PROMISE repository Sayyad Shirabad and
Menzies [2005], a repository widely used by the software engineering community. This dataset
is labeled into 12 classes, where one is the ’Functional’ class, and the other 11 are non-functional
requirements. In this research, we used only those labeled as sub-classes of non-functional require-
ments: Functional, Availability, Legal, Look and feel, Maintainability, Operational, Performance,
Scalability, Security, Usability, Fault tolerance, and Portability, making a total of 370 requirements.
Table 1 shows the quantity of records per label.

Regarding the non-functional, there are some unbalanced classes and low representative of at least
one class: Portability, with only one requirement. In Limaylla-Lunarejo et al. [2023], a translation of
this dataset was performed to obtain a dataset in the Spanish language, a ’Translated PROMISE’. We
obtained this dataset from Zenodo1, when it was published for public use. For this research, we de-
cided to remove the classes whose number requirements do not exceed a threshold (20 requirements):
Legal, Maintainability, Fault tolerance, and Portability. Finally, 329 requirements for Translated
PROMISE were processed, divided into 280 and 49 for training and testing, respectively. Due the
small size of the dataset, we decide to use a split of 85% train and 15% test.

Table 1: Summary of records - PROMISE NFR

Label Quantity
PROMISE NFR

PO = Portability 1

FT = Fault tolerance 10

L = Legal 13

MN = Maintainability 17

A = Availability 21

SC = Scalability 21

LF = Look and feel 38

PE = Performance 54

O = Operational 62

SE = Security 66

US = Usability 67

Total 370

3.3 Classification Process

We performed an experiment to evaluate and compare the performance of several algorithms, based
on the strategy proposed by Dalal and Zaveri (2011) Dalal and Zaveri [2011]. For Shallow ML
algorithms, we used traditional NLP techniques, like tokenization, stopwords, and stemming for
pre-processing; Bag of Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF)
for extract features (text vectorization); and Multinomial Naive Bayes (MNB), Multinomial Logistic
Regression (MLR), and Support Vector Machine (SVM) as selected algorithms. According to some
research (Zheng [2019], Maalej et al. [2016]), the use of n-grams leads to better performance scores in
text classification in some cases. We applied the combination of Unigram, Bigram, and Trigram with
BoW and with TF-IDF, resulting in six combinations for every Shallow ML algorithm (18 in total)
to validate the impact of the performance for the n-grams technique. Regarding the DL algorithms,
no data pre-processing is required for the selected algorithms: the Convolutional Neural Network
(CNN), BETO Cañete et al. [2020] (a Bert-based model pre-trained on several Spanish corpora),
and fastText Joulin et al. [2016]. Each one has its own technique for text vectorization (e.g., word
embedding).

The process followed in this study is shown in Figure 1. The training phase was performed on
each algorithm and tuning the hyperparameter associated on the training dataset. We present the
best hyperparameters for each algorithm in AppendixA. Once the best hyperparameters have been

1https://doi.org/10.5281/zenodo.7311148
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Figure 1: Experiment steps for requirement classification

obtained, all the models were tested in the same test split and compare using well-known metrics,
like accuracy, precision, recall and f1-score (weigthed).

4 Results

This section presents the performance metrics for NFR classification training with Translated
PROMISE dataset (RQ1/R3) and using Bigram/Trigram in combination with the text vectoriza-
tion techniques for the Shallow ML algorithms (RQ2).

4.1 NFR Classification using Translated PROMISE (RQ1/RQ3)

We trained the Translated PROMISE NFR dataset with all the combinations of algorithms and text
vectorization to obtain the best requirement classification performance. Table 2 shows the resulting
accuracy and weighted average of precision, recall, and f1-score metrics for the classification
processes. The values in bold indicate the highest weighted f1-scores.

Table 2: Performance Classification (RQ1)

Algorithm NLP technique accuracy weighted avg

precision recall f1-score

MNB BoW 0.69 0.71 0.69 0.69

TF-IDF 0.67 0.69 0.67 0.67

MLR BoW 0.73 0.73 0.73 0.72

TF-IDF 0.67 0.68 0.67 0.67

SVM BoW 0.76 0.78 0.76 0.75

TF-IDF 0.73 0.76 0.73 0.73

CNN 0.73 0.76 0.73 0.72

BETO 0.69 0.81 0.69 0.67

FASTTEXT 0.76 0.76 0.76 0.75

SVM in combination with BoW and FastText achieves the best weighted f1-score for all the models:
0.75. Both models performed the training process in less than 10 minutes, however, the FastText
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model was easier to implement and since it manages its own tokenizer internally, it was not necessary
to perform any pre-processing technique. SVM in combination with TF-IDF, CNN, and MLR with
BoW also presented f1-score values above 0.7. Regarding weighted precision and recall, precision is
slightly higher than recall, except for BETO, who has a higher value for precision (0.81).

4.2 NFR Classification using Translated PROMISE and applying Bigram/Trigram (RQ2)

To identify if the use of Bigram or Trigram has an impact on the performance classification for
the Shallow ML algorithms, we combined the BoW and TF-IDF with the use of n-gram for the
Shallow ML algorithms. The CountVectorizer and TfidfVectorize classes, provided by the scikit-learn
library, allow the configuration of a range of n-grams considered in the text vectorization process.
We considered a range of (1, 2), which means unigrams and bigrams and presented here as Bigrams,
and a range of (1,3), which means unigrams, bigrams, and trigrams, presented as Trigrams. Table 3
shows the results using both cases.

Table 3: Performance Classification with Bigram/Trigram (RQ2)

Algorithm NLP technique accuracy weighted avg

precision recall f1-score

MNB

BoW Bigram 0.71 0.72 0.71 0.71

BoW Trigram 0.71 0.72 0.71 0.71

TF-IDF Bigram 0.69 0.70 0.69 0.69

TF-IDF Trigram 0.67 0.68 0.67 0.67

MLR

BoW Bigram 0.73 0.74 0.73 0.72

BoW Trigram 0.71 0.73 0.71 0.70

TF-IDF Bigram 0.71 0.74 0.71 0.70

TF-IDF Trigram 0.73 0.77 0.73 0.72

SVM

BoW Bigram 0.73 0.73 0.73 0.73

BoW Trigram 0.76 0.76 0.76 0.74

TF-IDF Bigram 0.71 0.75 0.71 0.70

TF-IDF Trigram 0.73 0.76 0.73 0.72

A comparison of these results with the results of the previous subsection (RQ1) demonstrates that
depends on the algorithm and the text vectorization technique if the Bigram or Trigram improves the
f1-score metrics. For MNB in combination with BoW, the use of Bigram and Trigram obtained better
results than Unigram (over 0.02), while with TF-IDF only the use of Bigram improve the results
(0.02). For MLR in combination with BoW, Bigram gets the same results and Trigram even lower
values, while with TF-IDF Bigram gets better results in 0.03 and Trigram in 0.05. Finally, for SVM
in combination with BoW and with TF-IDF, Bigram, and Trigram get lower values than Unigram.

5 Discussion

The use of neural networks is becoming more common, including in requirements classification López-
Hernández et al. [2021]. We can observe, based on the initial result, that both shallow ML and DL
achieved similar outcomes. Regarding RQ1, SVM with BoW and fastText get the best performance.
We found that SVM obtained better results with BoW technique, which is contrary to the results
obtained in Limaylla-Lunarejo et al. [2023], where SVM achieved better performance using TF-IDF
in FR/NFR classification.This might be attributed to the fact that non-functional requirements often
share numerous common words and cardinal numbers, causing certain words that could be important
for classifying a specific subclass to be undervalued when employing TF-IDF. Nevertheless, the
literature presents contrasting findings. In Dias Canedo and Cordeiro Mendes [2020], the combination
of SVM with TF-IDF outperformed the results when compared to using BoW with the PROMISE
dataset. However, in Haque et al. [2019], the situation is reversed with an expanded version of
PROMISE dataset.

One of the research questions aimed to explore the influence of employing n-gram within different
algorithm and feature extraction combinations (RQ2). In our previous research we introduced several
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binary classifiers (FR/NFR), with most of them demonstrating improvement when employing bigrams
and unigrams Limaylla-Lunarejo et al. [2023]. On the other hand, Suhaidi et al. (2021) discuss the
effect of using n-grams in the text pre-processing method, mentioning that this technique can make a
classifier more restrictive Suhaidi et al. [2021]. According to the results of the Experiment Two, the
MNB algorithm is the one that most reflects the impact of the use of n-grams, with an improvement
with both BoW and TF-IDF techniques. MLR with TF-IDF also presents an improvement with
bigrams, and SVM does not show any improvement. In the analysis of sub-classes of NFRs, we are
dealing with multi-class classification, and with a text that include more technical and numerical
vocabulary, that can lead to limited improvement when using n-grams.

Regarding RQ3, we consider that even though fastText and SVM obtained similar results, fastText is
a highly potent algorithm. Its ease of implementation, automated tuning process, and the absence
of data pre-processing make it the optimal choice in terms of the trade-off between implementation
time and performance. Similar results were found in Tiun et al. [2020], where fastText was the best
model for binary requirements classification (functional/non-functional) and in our previous research
Limaylla-Lunarejo et al. [2023]. However, just like other DL algorithms, it is considered a ’black
box,’ and one of its main limitations is its interpretability in text classification Kowsari et al. [2019].

6 Conclusions

In this research, we have presented a comparison between some traditional ML algorithms in
combination with text vectorizations, and some DL algorrithms to classify automatically sub-classes
of NFR written in Spanish. Our findings reveal that SVM with BoW and fastText overperformed
the other algorithms, with a weighted f1-score of 0.75. Nevertheless, fastText stands out due to its
speed and ease of implementation. The results also reveal that, although a general rule for the use of
n-gram in combination with shallow algorithms and TF-IDF techniques cannot be confirmed, its use
in the training phase is recommended, since it can improve some results in certain cases.

About future work, our plan includes replicating the experiment with the extended PROMISE
NFR dataset Lima et al. [2019], a new dataset that expands the original PROMISE NFR. We will
also explore strategies to balance the dataset in order to enhance performance and include all the
sub-classes of non-functional category.
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A Best Hyperparameters

Table 4 and Table 5 show the best hyperparameters used for the shallow ML and DL algorithms, respec-
tively. Since fastText is an algorithm with its own tuning process, there is no need to specify or obtain the
hyperparameters.

Table 4: Best Hyperparameters - Shallow ML algorithms

Alg. Hp BoW
Unigram

BoW
Bigram

BoW
Trigram

TF-IDF
Unigram

TF-IDF
Bigram

TF-IDF
Trigram

MNB alpha:
fit_prior:

0.01
false

0.01
true

0.01
false

0.01
true

0.01
true

0.1
true

MLR C:
solver:

2
newton-cg

10
newton-cg

1
newton-cg

10
newton-cg

10
newton-cg

100
newton-cg

SVM
C:
gamma:
kernel:

10
0.05
rbf

10
0.05
linear

10
0.01
rbf

10
0.5
rbf

10
0.05
rbf

1.0
0.001
linear

Table 5: Best Hyperparameters - DL algorithms

Algorithms Hyperparameters

CNN

batch_size: 16
epochs: 40
filtersmap: 100
learning_rate: 0.001

BETO
batch_size: 32
epochs: 10
learning_rate: 0.00005
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