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Abstract

Seismic advances in generative AI algorithms have led to the temptation to use
AI-synthesized data to train next-generation models. Repeating this process creates
autophagous (“self-consuming”) loops whose properties are poorly understood.
We conduct a thorough analysis using state-of-the-art generative image models of
three autophagous loop families that differ in how they incorporate fixed or fresh
real training data and whether previous generations’ samples have been biased to
trade off data quality versus diversity. Our primary conclusion across all scenarios
is that without enough fresh real data in each generation of an autophagous loop,
future generative models are doomed to have their quality (precision) or diversity
(recall) progressively decrease. We term this condition Model Autophagy Disorder
(MAD) and show that appreciable MADness arises in just a few generations.

Generation t = 1 t = 5 t = 9

Figure 1: Training generative artificial intelligence (AI) models on synthetic data progressively
amplifies artifacts. As AI-generated data proliferates, future models will train on both real and
synthetic data in autophagous (“self-consuming”) loops. To highlight a consequence of autophagy,
we trained a sequence of StyleGAN2 [1] models wherein the model at generation t ≥ 2 trains only on
synthetic data from generation t− 1: a fully synthetic loop (Figure 3) without sampling bias (λ = 1).
The cross-hatched artifacts (possibly an architectural fingerprint [2]) are progressively amplified.

1 Introduction

Synthetic data from generative artificial intelligence (AI) models like Stable Diffusion and ChatGPT
[3, 4] is rapidly proliferating on the Internet; soon, synthetic may outnumber real data. Today’s AI
models use Internet-scraped data, and thus unwittingly train on synthetic data (Figure 2). Moreover,
AI-synthesized data is increasingly popular [5–10] because it is convenient [11, 12], anonymous
[13–16], can augment real data [17, 18], and can match AI models’ ever-increasing sizes [19–21].

Generative models can train on synthetic data repeatedly, forming autophagous (“self-consuming”)
loops (Figure 3), which vary not only on how they use real and synthetic data, but also on whether they
incorporate sampling biases to trade off perceptual quality versus diversity. If synthetic data is in our
training datasets today, then future autophagous loops are inevitable—and yet, their effects are poorly
understood. In one direction, autophagy may amplify synthetic biases and artifacts (fingerprints), as
in Figure 1. In another direction, autophagy with sampling biases could dilute data diversity, as in
Figure 5. We describe these and other symptoms of autophagy as Model Autophagy Disorder (MAD).
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Figure 2: Today’s large-scale image training datasets contain AI syntheses, including LAION-5B,
which trains Stable Diffusion and has samples from AICAN, Pix2Pix, StyleGAN, and DALL-E
[1, 3, 22–25]. Generative models using LAION-5B thus close an autophagous loop (Figure 3).
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Figure 3: Recursively training generative models on syn-
thetic data from other models produces an autophagous
(“self-consuming”) loop. In this paper, we study three au-
tophagous loop variants: the fully synthetic loop (only syn-
thetic data), the synthetic augmentation loop (synthetic +
fixed real data), and the fresh data loop (synthetic + fresh
real data). Each generation samples with a bias λ that trades
off sample quality versus diversity.

Contributions. We thoroughly study AI autophagy via generative image models; our findings apply
to any data type (e.g., text) and unify contemporary results. Our three key contributions establish that,
without enough fresh real data each generation, future generative models are doomed to go MAD.
Moreover, we demonstrate that MADness occurs in only a handful of generations.

1. Realistic models for autophagous loops. We propose 3 types of self-consuming loops (Figure 3):

The fully synthetic loop (Section 2), where each generation’s training data is entirely synthesized by
previous generations; e.g., training a model on its own outputs [26]. We show that, in this case, the
synthetic quality (precision) or diversity (recall) decreases over generations.

The synthetic augmentation loop (Section 3), where each generation’s training data includes previous
generations’ syntheses and a fixed set of real data; e.g., training on real and self-generated data [27].
We show that fixed real training data only slows the degradation of synthetic quality or diversity.

The fresh data loop (Section 4), where each generation’s training data includes previous generations’
syntheses and a fresh set of real data; e.g., training on both real and synthetic Internet data (Figure 2).
We show that, with enough fresh real data, the synthetic quality and diversity do not degrade.

2. Sampling bias plays a key role in autophagous loops. Practitioners often favor synthetic quality,
whether through curation or model-intrinsic mechanisms that boost quality (precision) and sacrifice
diversity (recall) [28], like truncation and guidance [29–33]. We unify these different sampling
biases under a universal parameter λ ∈ [0, 1]. Decreasing λ generally increases quality and decreases
diversity. Specific definitions for λ include: sampling from N (µ, λΣ) for any Gaussian N (µ,Σ),
defining λ = Ψ for StyleGAN2 with truncation Ψ ∈ [0, 1], and defining λ = 1

1+w for diffusion with
guidance [32] w ∈ [0,∞]. We show that, without these biases (λ = 1), MADness degrades quality
and diversity, while with them (λ < 1), quality can persevere but diversity degrades even faster.

3. Autophagous loop behaviors hold across various generative models and datasets. We
use multivariate Gaussian, Gaussian mixture, diffusion (DDPM), StyleGAN2, Wasserstein GAN
(WGAN), and Normalizing Flow [30, 34–36] models on datasets like FFHQ and MNIST [37, 38].

Related work. Contemporary works on AI autophagy support our conclusions. [39] show that
variational autoencoders and Gaussian mixture models in fully synthetic loops, and language models
in synthetic augmentation and fresh data loops, can go MAD. However, they do not incorporate sam-
pling biases, and they fine-tune some of their models, while we train ours from scratch. Meanwhile,
[40, 41] conduct fully synthetic and synthetic augmentation loops with diffusion models and report
the same conclusions on sampling bias as us. Finally, [42] find that even one synthetic augmentation
loop generation can induce MADness, hurting downstream tasks like classification.
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Figure 4: Training generative models in a fully synthetic loop reduces synthetic quality and/or
diversity, depending on sampling bias. We plot the FID, precision (quality), and recall (diversity)
of synthetic FFHQ and MNIST images from fully synthetic loops with unbiased (λ = 1) and biased
(λ < 1) StyleGAN2 and DDPM models (for MNIST FIDs, we use LeNet [43]). FID increases and
diversity decreases. However, sampling bias can salvage quality at the expense of diversity.

Generation t = 1 t = 3 t = 5

Figure 5: Training generative models on biased synthetic data in a fully synthetic loop progres-
sively loses diversity. We repeat the Figure 1 experiment but with sampling bias λ = 0.7 (Figure 4).

2 The fully synthetic loop: Training only on synthetic data leads to MADness

Unbiased sampling degrades synthetic data quality and diversity. In Figure 4 we empirically
study the fully synthetic loop using FFHQ StyleGAN2 and MNIST DDPM models with (λ < 1)
and without (λ = 1) sampling bias. In the latter case, synthetic data distributions undergo random
walks that deviate from the reference distribution because each generation’s training data is finite.
Consequently, the models go MAD: FID [44] increases, while quality and diversity steadily decrease.

Biased sampling can boost synthetic data quality, but at the expense of diversity. As for the
biased FFHQ StyleGAN2 and MNIST DDPM models (λ = 0.7 and 0.5) in fully synthetic loops (
Figure 4), sampling bias increases precision, but also accelerates losses in diversity (shown clearly in
Figure 5) compared to unbiased models. Moreover, the FID still increases, indicating MADness.

3 The synthetic augmentation loop: Fixed real data only slows MADness

Fully synthetic loop analysis is tractable, but practitioners will use real data when available. Figure 6
shows how keeping the full FFHQ dataset in a StyleGAN2 synthetic augmentation loop still produces
the same symptoms (albeit more slowly) as the fully synthetic loop: the distance from the real dataset
(FID) increases, while the quality (precision) and diversity (recall) of synthetic samples still decrease
without sampling bias. In fact, we see the same artifacts appear as in Figure 1. Additional MNIST
DDPM experiments confirm these trends for synthetic augmentation loops with sampling bias.

4 The fresh data loop: Fresh real data can prevent MADness

We imagine that a data pool (e.g., the Internet) contains real and synthetic data. Independently
drawing nt samples from this pool yields nt

r real and nt
s synthetic samples (nt

r + nt
s = nt) to train

the t-th generation model. This fresh data loop reveals two intriguing phenomena:
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Figure 6: Training generative models in a synthetic augmentation loop reduces synthetic quality
and/or diversity, albeit more slowly than in the fully synthetic loop. We show the FID, precision
(quality), and recall (diversity) of FFHQ syntheses from unbiased (λ = 1) synthetic augmentation
(where the original dataset is kept) and fully synthetic (for reference, from Figure 4) loops.
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Figure 7: In a fresh data loop, the benign amount of synthetic data does not increase with the
amount of real data. As the real data count nr increases, the synthetic data count ns for which
ne ≥ nr (green area) converges. Synthetic data is only likely to be helpful for small nr.

Initial models will eventually be forgotten in the fresh data loop. For both MNIST DDPM and
Gaussian models with constant nt

r = nr and nt
s = ns for all t, the FID and Wasserstein distance [45]

converged depending on nr, ns, and λ, not on the initial models or the initial dataset size n1
s. These

distances converging instead of always increasing means that fresh real data can prevent MADness.

Modest (but not excessive) amounts of synthetic data can help a fresh data loop. We Monte-Carlo
simulate fresh data loop asymptotic Wasserstein distances in autophagous Gaussian models, and
calculate the effective sample size ne that an alternative model would need to perform the same as
the asymptote from scratch. If ne/nr is greater (or less) than 1, synthetic data effectively increases
(or decreases) the real sample size. In Figure 7, the non-MAD region ne/nr ≥ 1 grows with λ and
shrinks with ns. Practitioners generally sample with bias, so λ < 1 conclusions are more useful.

5 Discussion

We extrapolate what may happen as generative models become ubiquitous and train future models
in autophagous (self-consuming) loops: without enough fresh real data, future models are doomed
to Model Autophagy Disorder (MAD), progressively losing quality (precision) or diversity (recall),
and amplifying artifacts. Uncontrolled MAD, even after just five generations, could poison the
Internet’s data quality and diversity (Figures 1 and 5). Practitioners who deliberately use synthetic
training data should heed our warning, while those who unknowingly train on synthetic data could try
identifying [46–48] and rejecting synthetic data, perhaps through watermarking [49–55]. However,
watermarking inserts hidden artifacts that autophagy could uncontrollably amplify.

Future works could combine or alternate our autophagous loop families, examine how MADness
affects downstream tasks (e.g., classification), and use other data types. We have focused on imagery,
but other data types, like text, cannot avoid autophagy [27, 56, 57] and MADness [39].
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