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Abstract

Statistical divergences quantify the difference between probability distributions,
thereby allowing for multiple uses in machine-learning. However, a fundamental
challenge of these quantities is their estimation from empirical samples since
the underlying distributions of the data are usually unknown. In this work, we
propose a divergence inspired by the Jensen-Shannon divergence which avoids
the estimation of the probability density functions. Our approach embeds the
data in an reproducing kernel Hilbert space (RKHS) where we associate data
distributions with uncentered covariance operators in this representation space.
Therefore, we name this measure the representation Jensen-Shannon divergence
(RJSD). We provide an estimator from empirical covariance matrices by explicitly
mapping the data to an RKHS using Fourier features. This estimator is flexible,
scalable, differentiable, and suitable for minibatch-based optimization problems.
Additionally, we provide an estimator based on kernel matrices without an explicit
mapping to the RKHS. We provide consistency convergence results for the proposed
estimator. Moreover, we demonstrate that this quantity is a lower bound on the
Jensen-Shannon divergence, leading to a variational approach to estimate it with
theoretical guarantees. We leverage the proposed divergence to train generative
networks, where our method mitigates mode collapse and encourages samples
diversity. Additionally, RJSD surpasses other state-of-the-art techniques in multiple
two-sample testing problems, demonstrating superior performance and reliability
in discriminating between distributions.

1 Introduction

Divergences quantify the difference between probability distributions. In machine-learning, diver-
gences can be applied to a wide range of tasks, including generative modeling (generative adversarial
networks, variational auto-encoders), two-sample testing, anomaly detection, and distribution shift
detection. The family of f -divergences is among the most popular statistical divergences, including
the well-known Kullback-Leibler and Jensen-Shannon divergences. A fundamental challenge to using
divergences in practice is that the underlying distribution of data is unknown, and thus divergences
must be estimated from observations. Several divergence estimators have been proposed (Yang and
Barron, 1999; Sriperumbudur et al., 2012; Krishnamurthy et al., 2014; Moon and Hero, 2014; Singh
and Póczos, 2014; Li and Turner, 2016; Noshad et al., 2017; Moon et al., 2018; Bu et al., 2018;
Berrett and Samworth, 2019; Liang, 2019; Han et al., 2020; Sreekumar and Goldfeld, 2022), most of
which fall into four categories: plug-in, kernel density estimation, k-nearest neighbors, and neural
estimators.

Kernel methods are another approach for measuring the interaction between probability distributions.
For example, the maximum mean discrepancy (MMD) (Gretton et al., 2012) is a divergence com-
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puted as the distance between the mean embeddings (first-order moments) of the two probability
distributions in a reproducing kernel Hilbert space (RKHS). However, due to the underlying geometry,
MMD lacks a straightforward connection with classical information theory tools (Bach, 2022). On
the other hand, covariance operators (second-order moments) in RKHS have been used to propose
multiple information theoretic quantities, such as marginal, joint, and conditional entropy (Sanchez
Giraldo et al., 2014), as well as mutual information (Yu et al., 2019), and total correlation (Yu et al.,
2021). However, strategies for estimating divergences within this framework have been less explored.

To fill this void, we propose a kernel-based information theoretic learning framework for divergence
estimation. We make the following contributions:

• A novel divergence, the representation Jensen-Shannon divergence (RJSD), that avoids the estima-
tion of the underlying density functions by mapping the data to an RKHS where distributions can
be embedded using uncentered covariance operators acting in this representation space.

• An estimator from empirical covariance matrices that explicitly map data samples to an RKHS using
Fourier features. This estimator is flexible, scalable, differentiable, and suitable for minibatch-based
optimization problems. Additionally, an estimator based on kernel matrices without an explicit
mapping to the RKHS is provided. Consistency results and sample complexity bounds for the
proposed estimator are derived.

• A connection between the kernel-based entropy and Shannon’s entropy, as well as the relationship
between RJSD with the classical Jensen-Shannon divergence. Namely, RJSD emerges as a lower
bound on the classical Jensen-Shannon divergence enabling the construction of a variational
estimator for the classical Jensen-Shannon divergence with statistical guarantees.

We use RJSD for training generative adversarial networks and show that it prevents mode collapse
and encourages diversity, leading to more accurate and heterogeneous results. We also apply RJSD
for two-sample testing problems and show that it accurately detects differences between probability
distribution functions even for cases where other state-of-the-art measures fall short.

2 Background

2.1 Covariance operators

Let {X,BX} be a measurable space and κ : X × X → R≥0 be a positive definite kernel. There
exists a mapping ϕ : X → H, where H is a reproducing kernel Hilbert space (RKHS), such that
κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. A probability distribution P can be mapped to a covariance operator
CP : H → H. The covariance operator is defined as follows:

CP = EX∼P[ϕ(X)⊗ ϕ(X)] =

∫
X

ϕ(x)⊗ ϕ(x) dP(x). (1)

Similarly, for any f, g ∈ H, EX∼P[f(X)g(X)] = ⟨g, CPf⟩H. For a bounded kernel, the covari-
ance operator is positive semi-definite, Hermitian (self-adjoint), and trace class (Sanchez Giraldo
et al., 2014; Bach, 2022). The spectrum of the covariance is discrete and consists of non-negative
eigenvalues λi with

∑
λi < ∞.

2.2 Kernel-based information theory

We can define information theoretic quantities on the spectrum of normalized covariance operators
with unit trace. This observation was made by Sanchez Giraldo et al. (2014) who proposed the
kernel-based entropy functional: Sα(CP) =

1
1−α log [Tr(Cα

P )]. Tr(·) denotes the trace operator, and
α > 0 is the entropy order. In the limit when α → 1, Sα→1(CP) = −Tr (CP logCP) becomes von
Neumann entropy.

Kernel-based entropy estimator: The kernel-based entropy estimator relies on the spectrum of
the empirical uncentered covariance operator, which is defined as CCCX = 1

N

∑N
i ϕ(xi)⊗ ϕ(xi). Let

X = {xi}Ni=1 be a set of samples x ∈ Xd following an unknown distribution P defined on Xd. Then,
we can construct the Gram matrix KX , consisting of all normalized pairwise kernel evaluations of the
samples in X, that is (K)ij = κ(xi, xj). If we normalize the matrix KX such that, Tr (KX) = 1,
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CCCX and KX have the same non-zero eigenvalues (Sanchez Giraldo et al., 2014). This construction
yields the kernel-based entropy estimator:

S (KX) = −Tr (KX logKX) = −
N∑
i=1

λi log λi, (2)

where λi represents the ith eigenvalue of KX .

Covariance-based estimator: Alternatively, we can use an explicit mapping ϕ : Xd → HD

to a finite dimensional RKHS. We propose to use Fourier features to construct a mapping
function to HD. Given a shift-invariant kernel κ : X × X → R≥0, the random Fourier
features (RFF) (Rahimi and Recht, 2007) is a method to create a smooth feature mapping
ϕω(x) : Xd → RD so that κ(x, x′) ≈ ⟨ϕω(x), ϕω(x

′)⟩. To generate an RFF mapping,
we draw D

2 i.i.d samples ω1, . . . ,ωD/2 ∈ Rd. Finally, the mapping is given by ϕω(x) =√
2
D

[
cos(ω⊤

1 x), sin(ω
⊤
1 x), · · · , cos(ω⊤

D/2x), sin(ω
⊤
D/2x)

]
.

Letting ΦX ∈ RN×D be the matrix containing the mapped samples, we can compute the empirical
uncentered covariance matrix asCCCX = 1

NΦ⊤
XΦX . Finally, we exploit the spectrum of the uncentered

covariance matrix to compute the von Neumann entropy of CCCX as:

S (CX) = −Tr (CX logCX) = −
D∑
i=1

λi log λi, (3)

where λi represents the ith eigenvalue of CX .

The kernel-based entropy has been used as a building block for other matrix-based measures, such as
joint and conditional entropy, mutual information (Yu et al., 2019), total correlation (Yu et al., 2021),
and divergence (Hoyos Osorio et al., 2022). Despite the success of the aforementioned measures,
their connection with the classical information theory counterparts remains unclear.

Next, we investigate the relationship between the kernel-based entropy estimator and Shanonn’s
entropy.
Definition 1. Let ϕ : X → H be a mapping to a reproducing kernel Hilbert space (RKHS), and
κ : X×X → R≥0 be a positive definite kernel, such that κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H, and κ(x, x) = 1
for all x ∈ X. Then, the kernel density function induced by the mapping ϕ is defined as follows:

Pϕ(x) =
1

h
⟨ϕ(x)|CP|ϕ(x)⟩ =

1

h

∫
X

κ2(x, x′)dP(x′), (4)

where h =
∫
X
⟨ϕ(x)|CP|ϕ(x)⟩ dx is the normalizing constant.

Eqn. 4 can be interpreted as an instance of the Born rule which calculates the probability of finding a
state ϕ(x) in a system described by the covariance operator CP (González et al., 2022). Equivalently,
the right hand side corresponds to a Parzen density estimator with kernel κ2(·, ·).
Theorem 1. Let Pϕ(x) be the kernel density function induced by a mapping ϕ : X → H, then, the
cross entropy between P and Pϕ is:

H(P,Pϕ) = S(CP) + log(h). (5)

Proof: See Appendix A.1.

This result relates to kernel-density estimation for entropy calculation; however, the covariance
operator bypasses the estimation of the underlying distribution.

3 Representation Jensen-Shannon Divergence

For two probability measures P and Q on a measurable space {X,BX}, the Jensen-Shannon diver-
gence (JSD) is defined as follows:

DJS(P,Q) = H

(
P+Q

2

)
− 1

2
(H(P) +H(Q)) , (6)
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where P+Q
2 is the mixture of both distributions and H(·) is Shannon’s entropy. The Quantum

counterpart of the Jensen-Shannon divergence (QJSD) between density matrices ρ and σ is defined
as DJS(ρ, σ) = S

(
ρ+σ
2

)
− 1

2 (S(ρ) + S(σ)), where S(·) is von Neumann’s entropy. Similar to the
kernel-based entropy, we let the covariance operators play the role of the density matrices to derive a
measure of divergence that can be computed directly from data samples.
Definition 2. Let P and Q be two probability measures defined on a measurable space {X,BX},
and let ϕ : X → H be a mapping to a reproducing kernel Hilbert space (RKHS) H, such that
⟨ϕ(x), ϕ(x)⟩H = 1 for all x ∈ X. Then, the representation Jensen-Shannon divergence (RJSD)
between uncentered covariance operators CP and CQ is defined as:

Dϕ
JS(CP, CQ) = S

(
CP + CQ

2

)
− 1

2
(S(CP) + S(CQ)) . (7)

3.1 Theoretical Properties

RJSD inherits most of the properties of classical and quantum Jensen-Shannon divergence. Non-
negativity: Dϕ

JS(CP, CQ) ≥ 0. Positivity: Dϕ
JS(CP, CQ) = 0 if and only if CP = CQ. Symmetry:

Dϕ
JS(CP, CQ) = Dϕ

JS(CP, CQ). Boundedness: Dϕ
JS(CP, CQ) ≤ log(2). Also, Dϕ

JS(CP, CQ)
1
2 is a

metric on the cone of uncentered covariance matrices in any dimension (Virosztek, 2021).

Below, we introduce key properties of RJSD and the connection with its classical counterpart.
Theorem 2. For all probability measures P and Q defined on X, and covariance operators CP and
CQ with RKHS mapping ϕ(·) under the conditions of Definition 2, the following inequality holds:

Dϕ
JS(CP, CQ) ≤ DJS(P,Q) (8)

Proof: See Appendix A.2.
Theorem 3. let P and Q be two probability measures defined on X. If there exists a mapping ϕ∗ such
that P(x) = 1

hP
⟨ϕ∗(x)|CP|ϕ∗(x)⟩ and Q(x) = 1

hQ
⟨ϕ∗(x)|CQ|ϕ∗(x)⟩, then:

DJS(P,Q) = Dϕ∗

JS(CP, CQ). (9)

Proof: See Appendix A.3.

This theorem implies that the bound in Eqn. 8 is tight for optimal functions ϕ(x) that approximate
the true underlying distributions through Eqn. 4.

Finally, we show that RJSD relates to MMD with kernel κ2(·, ·).
Theorem 4. For all probability measures P and Q defined on X, and covariance operators CP and
CQ with RKHS mapping ϕ(x) such that ∀x ∈ X, ⟨ϕ(x), ϕ(x)⟩H = 1:

DJS(CP, CQ) ≥
1

8
∥CP − CQ∥2∗ ≥ 1

8
∥CP − CQ∥2HS =

1

8
MMDκ2(P,Q) (10)

Proof: See Appendix A.4.

From this result we should expect RJSD to be at least as efficient as MMD for identifying discrepancies
between distributions and that for a characteristic kernel κ, RJSD to be non zero if P ̸= Q.

3.2 Estimating the representation Jensen-Shannon divergence

Given two sets of samples X = {xi}Ni=1 ⊂ Xd and Y = {yi}Mi=1 ⊂ Xd with unknown distributions
P and Q, we propose two estimators of RJSD.

Covariance-based estimator: We propose to use Fourier features to construct a mapping function
ϕω : Xd → HD to a finite dimensional RKHS as explained in Section 2.2. Let ΦX ∈ RN×D

and ΦY ∈ RM×D be the matrices containing the mapped samples of each distribution. Then, the
empirical uncentered covariance matrices are computed as CCCX = 1

NΦ⊤
XΦX and CCCY = 1

MΦ⊤
Y ΦY .

Finally, the covariance-based RJSD estimator is defined as:

Dω
JS(CCCX ,CCCY ) = S (π1CCCX + π2CCCY )− (π1S(CCCX) + π2S(CCCY )) , (11)

where π1 = N
N+M and π2 = M

N+M are the sample proportions of each distribution (e.g. 1
2 if the

samples are balanced). Finally, we use Eqn. 3 to estimate the entropies of the covariance matrices.
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Figure 1: Jensen-Shannon Divergence estimation for two set of samples following Cauchy distribu-
tions (N = 512). We compare the following estimators: NWJ (Nguyen et al., 2010), infoNCE (Oord
et al., 2018), CLUB (Cheng et al., 2020), MINE (Belghazi et al., 2018), KNIFE (Pichler et al., 2022),
RJSD, RJSD with EMA, RJSD for a fixed kernel.

Kernel-based estimator: Here, we propose an estimator of RJSD from kernel matrices without an
explicit mapping to the RKHS.

Lemma 1. Let Z be the mixture of the samples of X and Y, that is, Z = {zi}N+M
i=1 where

zi = xi for i ∈ {1, . . . , N} and zi = yi−N for i ∈ {N + 1, . . . , N + M}. Also, let KZ be the
kernel matrix consisting of all normalized pairwise kernel evaluations of the samples in Z, then
S (π1CCCX + π2CCCY ) = S(KZ).

Since the spectrum of KX and CCCX have the same non-zero eigenvalues, likewise KY and CCCY , the
divergence can be directly computed from samples in the input space as:

Dκ
JS(X,Y) = S (KZ)− (π1S(KX) + π2S(KY )) (12)

4 Variational Estimation of classical Jensen-Shannon divergence

We exploit the lower bound in Theorem 2 to derive a variational method for estimating the classical
Jensen-Shannon divergence (JSD) given only samples from P and Q. Accordingly, we choose Φ to
be the family of functions ϕω : Xd → HD parameterized by ω ∈ Ω. Here, we aim to optimize the
Fourier features to maximize the lower bound in Eqn. 2. Notice that we can also use a neural network
fω with a Fourier features mapping ϕω in the last layer, that is, ϕω ◦ fω = ϕω(fω(x)). We call this
network a Fourier-features network (FFN). Finally, we can compute the divergence based on this
representation, leading to a neural estimator of classical JSD.
Definition 3. (Jensen-Shannon divergence variational estimator). Let Φ = {ϕω ◦ fω}ω∈Ω be the set
of functions parameterized by a FFN. We define our JSD variational estimator as:

D̂JS(P,Q) = sup
ω∈Ω

Dω
JS(CP, CQ). (13)

5 Experiments

5.1 Variational Jensen-Shannon divergence estimation

First, we evaluate the performance of our variational estimator of Jensen-Shannon divergence (JSD) in
a tractable toy experiment. Here, P ∼ p(x; lp, sp) and Q ∼ p(x; lq, sq) are two Cauchy distributions
with location parameters lp and lq and scale parameters sp = sq = 1. We vary the location parameter
of Q over time to increase the divergence. (see Appendix B.1 for more details). Then, we estimate
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Figure 2: GANs with different loss functions to evaluate mode collapse in
eightGaussians dataset. RJSD improves mode coverage and sample diversity.

Figure 3: Generated
samples using rep
JSD.

JSD drawing N = 512 samples from both distributions at every epoch. We compare the estimates of
divergence against different neural estimators. JSD corresponds to the mutual information between
the mixture distribution and a Bernoulli distribution indicating when a sample is drawn from P or
Q. Therefore, we use mutual information estimators to approach the JSD estimation, such as NWJ
(Nguyen et al., 2010), infoNCE (Oord et al., 2018), CLUB (Cheng et al., 2020), MINE (Belghazi
et al., 2018). We also employ KNIFE (Pichler et al., 2022) to estimate the entropy terms and compute
JSD.

Fig. 1 shows the estimation results. All compared methods approximate JSD; however, some of them
struggle to adapt to distribution changes. These abrupt adjustments could lead to instabilities during
training. In contrast to the compared methods, the RJSD estimator accurately estimates divergence
with a lower variance, adjusting itself smoothly to changes in the distributions. Additionally, by
using Exponential Moving averages (EMA) of the covariance matrices, the estimation variance
decreases further yielding a smoother estimation. Finally, we compute RJSD for a fixed set of Fourier
features without any optimization (no gradients backpropagated), and we can observe that RJSD still
approximates the true divergence. This result agrees with theorem 3 suggesting that the computed
kernel implicitly approximates the underlying distributions of the data.

5.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a family of models to generate images/audio by
minimizing the divergence between the generated and the real data distributions (Farnia and Ozdaglar,
2020).

Below, we propose a methodology for training GANs using RJSD in the objective function. The
RJSD-GAN is formulated as follows:

min
θ∈Θ

max
ω∈Ω

Dω
JS(X,Yθ), (14)

where X are samples from the real data, and Yθ are samples created by a generator Gθ. Instead
of classifying real and fake samples, we use a Fourier-features network {ϕω ◦ fω}ω∈Ω (FFN, see
Section 4) to learn a multidimensional representation in an RKHS where the divergence is maximized.
Subsequently, the generator {Gθ}θ∈Θ attempts to minimize RJSD. We follow a single-step alternating
gradient method. We assess our GAN formulation in two well-known mode-collapse experiments:
eight Gaussians dataset and stacked MNIST.

5.2.1 Synthetic experiments

We apply RJSD to train a GAN in a synthetic experiment. The target distribution is a mixture of eight
Gaussian distributions arranged in a circle. Fig. 2 shows the real data and the samples generated by
various learning functions to train GANs. As expected, the standard (vanilla) GAN fails to generate
samples from all modes (Fig. 2(a)). The Hinge (Lim and Ye, 2017) and Wasserstein-GP GANs
(Gulrajani et al., 2017) successfully produce samples representing all eight modes, yet Figs. 2(b) and
2(c) exhibit generated samples with reduced variance/diversity (lower entropy) within each mode: a
phenomenon termed intra-class collapse. As we observe, the generated samples fail to cover the entire
support of each Gaussian mode clustering towards the center. In contrast to the compared methods,
the samples generated by the RJSD-GAN show improved mode coverage and higher diversity. This
is visually noticeable in Fig. 2(d). Additionally, we perform the following quantitative analysis. We
cluster the eight modes generated by each method and estimate their mean and covariance matrices.
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Then, we calculate the Kullback-Leibler (KL) divergence between the real Gaussian modes and their
generated counterparts. Finally, we average the divergence among the eight modes. Table 1 highlights
the superiority of RJSD in terms of KL divergence when contrasted with the baseline methods. This
empirical evidence supports the efficacy of RJSD to avoid mode collapse and to generate samples
matching the target distribution beyond visual comparability.

5.2.2 Stacked MNIST

Table 1: KL divergence between real and generated
distributions on eightmodes dataset.

Average KL divergence
RJSD Wasserstein-GP Hinge

0.699 ± 0.245 0.981 ± 0.701 1.623 ± 1.000

Table 2: Number of modes and KL divergence be-
tween real and generated distributions on stacked
MNIST.

Modes
(Max 1000) KL

DCGAN (Radford et al., 2015) 99.0 3.40
ALI (Dumoulin et al., 2016) 16.0 5.40
Unrolled GAN (Metz et al., 2016) 48.7 4.32
VEEGAN (Srivastava et al., 2017) 150 2.95
WGAN-GP (Gulrajani et al., 2017) 959.0 0.72
PresGAN (Dieng et al., 2019) 999.6 ± 0.4 0.11 ± 7.0e−2
PacGAN (Lin et al., 2018) 1000.0 ± 0 0.06 ± 1.0e−2
GAN+MINE (Belghazi et al., 2018) 1000.0 ± 0 0.05 ± 6.9e−3
GAN + rep JSD 1000.0 ± 0 0.04 ± 1.2e−3

We conduct a quantitative evaluation to assess
the efficacy of RJSD in reducing mode collapse
on the stacked MNIST dataset. This dataset con-
sists of three randomly sampled MNIST digits
stacked along different color channels. This pro-
cedure results in 1000 possible classes (modes)
corresponding to all combinations of the 10 dig-
its. We use the standard DCGAN generator
architecture (Radford et al., 2015), and mod-
ify the discriminator architecture to include a
Fourier-features mapping (see implementation
details in Appendix B.2.2). We compare our
method against a considerable number of GAN
algorithms using the same generator and follow-
ing the same evaluation protocol. We utilize
a pre-trained classifier to quantify the number
of distinct generated modes. Additionally, we
calculate the Kullback-Leibler (KL) divergence
between the distribution of the generated modes
and the real mode distribution. Finally, we average the results over five runs. Table 2 shows the results,
and RJSD captures all modes and steadily generates samples from all classes achieving the lowest
KL-divergence compared to the baseline approaches. Although our algorithm is a standard GAN
that explicitly minimizes the Jensen-Shannon divergence, RJSD does not require the incorporation of
entropy regularizers or mode-collapse prevention mechanisms beyond the learning function itself.

5.3 Two sample testing

We evaluate the performance of the proposed divergence for two-sample testing on different datasets
and compare it against different state-of-the-art (SOTA) methods. We perform the following tests:
(a) RJSD-FF: Two-sample test based on RJSD, optimizing the Fourier features applied to the input
data. (b) RJSD-RFF: Two-sample test based on RJSD using random Fourier features, optimizing
just the length-scale of the associated Gaussian kernel. (c) RJSD-D: Two-sample test based on RJSD
using a deep Fourier-features network as explained in section 4. (d) RJSD-K1: Two-sample test
based on the kernel RJSD estimator, optimizing the length-scale of a Gaussian kernel. (e) MMD-O:
Two-sample test based on MMD, optimizing the length-scale of the Gaussian kernel (Liu et al., 2020).
(f) MMD-D: Two-sample test based on MMD with a deep kernel (Liu et al., 2020). (g) C2ST-L: a
classifier two-sample test based on the output classification scores (Cheng and Cloninger, 2022). (h)
C2ST-S: a classifier two-sample test based on the sign of the output classification scores (Lopez-Paz
and Oquab, 2016). We perform two-sample testing on two synthetic and two real-world datasets.

Blobs dataset (Liu et al., 2020): In this dataset, P and Q are mixtures of nine Gaussians with
the same modes. Each mode in P is an isotropic Gaussian; however, the modes in Q have different
covariances. Here, we perform two-sample testing increasing the number of samples per blob
(N = 9× samples per blob). Fig 4(a) presents the results. We can clearly see that RJSD-FF, RJSD-D,
and JSD outperform all SOTA methods. We can conclude that even for a small number of samples
the RJSD-based methods exhibit high test power.

High-Dimensional Gaussian Mixtures (Liu et al., 2020): We assess the performance of RJSD at
high dimensions on a bimodal multidimensional Gaussian dataset. In this dataset, P and Q have the
same modes, and their covariances differ only on a single dimension. See Liu et al. (2020) for details.

1We did not perform this test for large size datasets due to computational restrictions
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Figure 4: Average test power (α = 0.05) over 10 trials on the (a) Blobs dataset. (b) High dimensional
Gaussian mixture, fixed d = 10. (c) High dimensional Gaussian mixture, fixed N +M = 4000 (d)
Higgs dataset

Table 3: MNIST average test power (α = 0.05). Bold represents higher mean per column.
N +M 200 300 400 500 600
RJSD-FF 0.374 ± 0.100 0.811± 0.012 0.996± 0.001 1.000 ±0.000 1.000±0.000
RJSD-RFF 0.184 ± 0.025 0.320± 0.029 0.436 ±0.030 0.644 ±0.037 0.800 ±0.051
RJSD-D 0.352± 0.084 0.898 ±0.108 1.000 ±0.000 1.000± 0.000 1.000± 0.000
MMD-O 0.148± 0.035 0.221± 0.042 0.283± 0.042 0.398± 0.050 0.498± 0.035
MMD-D 0.449± 0.124 0.704± 0.182 0.985 ± 0.010 0.999± 0.003 1.000± 0.000
C2ST-L 0.254± 0.126 0.424± 0.113 0.818± 0.102 0.967± 0.029 0.994± 0.010
C2ST-S 0.181± 0.112 0.364± 0.104 0.759± 0.121 0.945± 0.042 0.986± 0.014

We test both, changing the number of samples while keeping the dimension constant (d = 10) and
maintaining the number of samples (N = 4000) while modifying the dimensionality. Figs. 4(b) and
4(c) display the results. RJSD-D and RJSD-FF are the winners in most settings, although C2ST-L
performs better at higher dimensions.

Higgs dataset (Baldi et al., 2014): Following Liu et al. (2020) we perform two-sample testing on
the Higgs dataset (d = 4) as we increase the number of samples. Fig. 4(d) shows the results. Once
again, RJSD-D and RJSD-FF outperform the baselines in almost all scenarios.

MNIST generative model: Here, we train RJSD models to distinguish between the distribution P
of MNIST digits and the distribution Q of generated samples from a pretrained deep convolutional
generative adversarial network (DCGAN) (Radford et al., 2015). Table 3 reports the average test
power for all methods as we increase the number of samples. RJSD-D consistently outperforms the
compared methods, except with the lowest number of observations.

6 Conclusions

We introduce the representation Jensen-Shannon divergence (RJSD), a novel measure based on
embedding distributions in a feature space allowing the construction of non-parametric estimators
based on Fourier features. Notably, this estimator demonstrates scalability, differentiability, making
it suitable for diverse machine-learning problems. We demonstrated that RJSD provides a lower
bound on the classical Jensen-Shannon divergence leading to a variational estimator of high precision
compared to related approaches. We leveraged this novel divergence to train generative networks,
and the empirical results show that RJSD effectively mitigates mode collapse yielding generative
models that produce more accurate and diverse results. Furthermore, when applied to two-sample
testing, RJSD surpassed other SOTA techniques demonstrating superior performance and reliability
to discriminate between distributions. These findings highlight the significant practical implications
of our divergence measure.
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