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Abstract

AI-enabled precision medicine promises a transformative improvement in health-
care outcomes. However, training on biomedical data presents a challenge: such
data are often high dimensional, clustered, and of limited sample size. To overcome
this, we propose a simple and scalable approach for cluster-aware embedding that
augments embedding methods with a convex clustering penalty. This approach out-
performs fourteen widely-used clustering methods on both highly underdetermined
problems and on large sample datasets, yielding interpretable dendrograms of the
embedded clusters. Our approach improves on existing methods and introduces a
modular framework for interpretable biomarker discovery in precision medicine.

1 Introduction and Related Work

Interpretable clustering of patients into distinct subtypes is important for personalized biomarker
discovery, diagnosis, prognosis, and treatment selection [4, 6, 9, 19, 53, 58, 57, 49]. However, due to
the “curse of dimensionality”, similarity metrics (and thus clustering algorithm outcomes) degrade
in high dimensions (the “p > N” setting common in medicine and genomics, where we have p
correlated variables and N observations where N is fewer than p). It is popular to use a two-stage
procedure, first embedding high dimensional data into a low-rank representation, and then clustering
in this latent space [9, 11, 12, 15, 16, 19, 27, 20, 45]. Unfortunately, such two-stage procedures can
lead to suboptimal and hard-to-explain results [10], as the embedding ignores important clustered
structure in the data, thereby harming the embedding (see Fig. 1).

These issues motivate a need for joint clustering and embedding methods for such data. Here, we
develop an explainable and scalable formulation for joint clustering and embedding ("cluster-aware
embedding") relevant to precision medicine applications; we show that an addition of a convex
clustering penalty (λ) to standard embedding methods yields a simple and modular approach to
cluster-aware embedding that is highly competitive in practice.

Exciting methods have emerged for jointly clustering and embedding data, including cluster-aware
feature selection [64], CCA mixture models [23, 40], non-negative matrix factorization (NMF)-
based models [25, 70, 75], and a number of neural networks (e.g., [7, 35, 39, 43, 56, 65, 73]).
Although pioneering, these approaches involve complicated many-objective or deep neural network
formulations that prioritize clustering over interpretability and underperform on restricted data cases.

While clustering algorithms are classically formalized as discrete optimization problems that are NP-
hard, by relaxing the hard clustering constraint to a convex penalty [48], clustering can be reformulated
as a convex optimization problem (referred to as “convex clustering,” “clusterpath” or “sum-of-
norms”). A range of theoretical/algorithmic developments and approaches for convex clustering
[14, 24, 36, 41, 46, 59, 60, 62, 67], have been developed to solve the problem [13, 31, 46, 60, 68].
Crucially, a recent warm-started ADMM approach—Algorithmic Regularization—enables feasible
computation of dense convex clustering λ paths, speeding convergence more than 100-fold [68].
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Figure 1: PCMF for explainable joint PCA and hierarchical clustering. a. Scatterplot of reconstructed
ground truth data (PCA rank r = 4) for 3-class problem; p = 20;N1 = 100 (blue), N2 = 25 (pink),
N3 = 25 (orange), colored by true cluster membership. b. PCA (r = 4) sequentially followed by
spectral clustering on PCA components. c. Joint PCA and clustering with PCMF (r = 4;λ = 3.0).
Two-step procedures in b-c fail to find correct clusters while PCMF succeeds. Color indicates
predicted clusters. d. PCMF paths for variable 1 fit along decreasing penalty path (λ = ∞ to
λ = 0). e. Interpretable PCMF dendrogram estimated from paths. f. PCMF coefficients accurately fit
ground truth cluster-specific coefficients used to generate data. PCMF coefficients v2, v3, and v4

approximate true cluster coefficients ("slopes") v∗
1 (blue), v∗

2 (pink), and v∗
3 (orange).

2 Our Approach: Pathwise Clustered Matrix Factorization (PCMF)

We use the convex clustering penalty (λ) as a modular addition to common embedding methods,
making them cluster-aware (i.e., enabling them to jointly cluster and embed). Given data matrix
X ∈ RN×p (with N observations in the rows, p variables in the columns, and rank R ≤ min(N, p)),
we can express the embedding constraint, X̂ , in terms of the widely-used truncated singular value
decomposition (tSVD) [21]. The rank-r ≤ R tSVD embedding is given by X̂ = UrSrV

T
r , subject

to orthogonality constraints on the first r left and right singular vectors (collected in Ur and Vr,
respectively) and the first r singular values on the diagonal of Sr [21]. This yields the PCMF problem:

minimize
X̂,Ur,Sr,Vr

1

2
∥X − X̂∥2F + λ

∑
i<j

wij∥X̂i· − X̂j·∥q

subject to X̂ − UrSrV
T
r = 0, UT

r Ur = V T
r Vr = Ir, Sr = diag(s1, . . . , sr),

(1)

for s1 ≥ s2 ≥ · · · ≥ sr > 0. We use the ℓ2-norm (q = 2). If X is centered, the tSVD is also principal
components analysis (PCA). Next, we present algorithms for solving this nonconvex problem.

PCMF dendrograms for explainability and model selection. PCMF does not require choosing the
number of clusters prior to fitting, and can generate a dendrogram. First, it fits a path of solutions
along a sequence of λs (Fig. 1e–f). Unlike previous convex clustering approaches [31, 68, 36], we
solve divisively and do not constrain the paths. Second, we sequentially (at each λ) estimate split
points based on whether or not increasing the number of clusters would improve model fit (based on
minimizing the penalized log-likelihood). Clustering at each λ is performed on the weighted affinity
matrix that estimates the connected components (the differences matrix defined by the dual variables
[13]). To output the dendrogram, we average X̂ within clusters using the split points along the paths.

Figure 2: PCMF identifies tumor clusters and embeddings using gene expression (p = 11, 931) from
N = 400 samples. a. Dendrogram shows hierarchical clustering on PCA embedding. b. PCMF path
and c. dendrogram show PCMF perfectly recovers clusters. d. Scatter/boxplots show PRLR gene
expression versus PCMF expression scores for each sample colored by PCMF-predicted clusters.
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Hierarchically-clustered PCA via Algorithmic Regularization. We first re-represent the relevant
nonzero distances as a sparse graph, G [13], and then introduce auxiliary variable G = DX̂ ∈ R|E|×p,
where D ∈ R|E|×N is a sparse matrix with the weighted pairwise distances defined by edges, E .
Then adding weights, wℓ, we rewrite the PCMF problem as:

minimize
X̂,G,Ur,Sr,Vr

1

2
∥X − X̂∥2F + λ

∑
ℓ∈E

wℓ∥Gℓ·∥q

subject to X̂ − UrSrV
T
r = 0, G−DX̂ = 0, UTU = V TV = Ir, Sr = diag(s1, . . . , sr),

(2)

for s1 ≥ · · · ≥ sr > 0, yielding a problem separable in its objective and penalty subject to
(nonconvex) constraints. We solve along a λ path, and use Algorithmic Regularization [68] (making
K small in Alg. 1) and mini-batches to dramatically speed up computation time and feasibility.

Algorithm 1 PCMF (Input: data X , decreasing path {λ}, weights w, pairwise distance matrix D)

Notation: data mean X , rank r, iteration k, norm q ∈ {1, 2,∞}, ρ ≥ 1, operator proxλ
ρPw,q(G)

1: G0 ← Z0
1 ← DX; X̂ ← Z0

2 ← X , (U0
r , S

0
r , V

0
r )← SVDr(X̂), L = chol(I + ρI + ρDTD)

2: for λ ∈ {λ} do
3: for k = 1, . . . ,K do
4: X̂k+1 ← L−TL−1

(
X + ρDT (Gk − Zk

1 ) + ρ(Uk
r S

k
r V

kT
r − Zk

2 )
)

5: Gk+1 ← proxλ
ρPw,q(G)(DX̂k+1 + Zk

1 ); (Uk+1
r , Sk+1

r , V k+1
r )← SVDr(X̂

k+1 + Zk
2 )

6: Zk+1
1 ← Zk

1 +DT X̂k+1 −Gk+1; Zk+1
2 ← Zk

2 + X̂k+1 − Uk+1
r , Sk+1

r , V k+1
r

7: end for
8: Save current path solutions: X̂λ ← X̂K , Gλ ← GK , (Ur,λ, Sr,λ, Vr,λ)← (UK

r , SK
r , V K

r )

9: Initialize for next path solution: X̂0 ← X̂K , G0 ← GK , (U0
r , S

0
r , V

0
r )← (UK

r , SK
r , V K

r )

10: end for; return pathwise solutions {X̂λ}, {Gλ}, {Ur,λ}, {Sr,λ}, {Vr,λ}

A nonlinear extension: Locally Linear PCMF (LL-PCMF). We introduce LL-PCMF using
Penalized Alternating Least Squares (PALS) to solve it [51]. Without loss of generality, we center
and scale X , set s1 = 1, and consider the rank-1 version (generalizable to rank-r via deflation
[42, 69]). Denoting the ith column vector of XT as xi = (XT )·i and defining penalty, P̃w,q(u,v) =∑

(i,j)∈E wij∥uiv−ujv∥q (weights wij > 0), we re-write the rank-1 tSVD with a convex clustering
penalty, λ. We introduce overparameterization, replacing the single vector v with matrix V ∈ Rp×N

(vi = V·i; column vector set {v}i, i = 1, . . . , N )—this allows each observation to potentially be its
own cluster in the limit λ→ 0. Defining Pw,q(u, V ) =

∑
(i,j)∈E wij∥uivi − ujvj∥q , we arrive at:

minimize
u,V

N∑
i=1

1

2
∥xi − uivi∥22 + λPw,q(u, V ) subject to ∥u∥22 = 1, ∥vi∥22 = 1, for i = 1, . . . , N.

(3)

We remove the penalty cross-terms, allowing u and v to independently vary with now locally-linear
weights, wij . We replace Pw,q(u,v) with Qu

w,q(u) =
∑

(i,j)∈E wij |ui − uj | and QV
w,q(V ) =∑

(i,j)∈E wij∥vi − vj∥q , and use fixed iterate k values, yku,i = xT
i v

k
i and yk

v,i = uk
i xi, for updates:

uk+1 ← argmin
u

N∑
i=1

∥yku,i − ui∥22 + λQu
w,q(u) subject to ∥u∥22 = 1, for i = 1, . . . , N, (4a)

{vi}k+1 ← argmin
{vi}

N∑
i=1

∥yk
v,i − vi∥22 + λQV

w,q(V ) subject to ∥vi∥22 = 1, for i = 1, . . . , N. (4b)

A multi-view extension: Pathwise Clustered CCA (P3CA). We extend our approach to jointly
learn low-rank correlation structure while clustering samples across multiple data views (i.e., fitting
canonical correlation analysis (CCA) within clusters). As in LL-PCMF, we overparameterized
(vi = V·i are column vectors of V ∈ Rp×N ), yielding P3CA problem:

minimize
{ui},{vi}

−
N∑
i=1

uT
i Σivi + λQw,q(U) + λQw,q(V ) subject to ∥ui∥22 = 1, ∥vi∥22 = 1, (5)

for i = 1, . . . , N . Without inequality constraints, this is biconvex in the {ui} and {vi}, with the
subproblems relaxed by fixing x̃i = Σivi and ỹi = ΣT

i ui at each subiterate, leading to Alg. 2.
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Algorithm 2 P3CA (Input: data (X,Y ), decreasing path {λ}, weights w, norm q ∈ {1, 2,∞})

Notation: iteration k, data means (X̄, Ȳ ), vi = V·i, x̃i = (X̃i·)
T , ỹi = (Ỹi·)

T , ρ ≥ 1
1: U ← X̄, V ← Ȳ
2: for λ ∈ {λ} do
3: for k = 1, . . . ,K do
4: x̃k+1

i ← Σiv
k
i (Σi = Xi·Y

T
i· ∈ RpX×pY ) for i = 1, . . . , N

5: u
k+ 1

2
i ← CONVEXCLUSTER(X̃k+1, Uk, λ,w, q); uk+1

i ← prox∥·∥2
2
(u

k+ 1
2

i ) , i = 1, . . . , N

6: ỹk+1
i ← ΣT

i u
k+1
i (ΣT

i = Yi·X
T
i· ∈ RpY ×pX ) for i = 1, . . . , N

7: v
k+ 1

2
i ← CONVEXCLUSTER(Ỹ k+1, V k, λ,w, q); vk+1

i ← prox∥·∥2
2
(v

k+ 1
2

i ) , i = 1, . . . , N

8: end for
9: Save path solutions: UK

i· ← uKT
i ; V K

i· ← vKT
i for i = 1, . . . , N ; (Uλ, Vλ)← (UK , V K)

10: Initialize: (U0, V 0)← (UK , V K)
11: end for; return pathwise solutions {Uλ}, {Vλ}

3 Results and Discussion

First, we evaluate our unsupervised cluster-aware approach (PCMF, LL-PCMF, and P3CA) using
synthetic data and 13 real-world biomedical datasets (7 single-view; 6 multi-view; Figs. 1–2; Table
1). Our approach outperforms 14 other methods on both underdetermined datasets (p > N ) and
large sample datasets (up to N = 100, 000), except versus DEC/IDEC on SRBCT. This includes
a small, multi-view COVID-19 dataset (N = 45) where P3CA identified hierarchically clustered
metabolome-proteome embeddings that predict severity (accuracy = 91.11%) and biomarkers.

Next, in the Tumors-Large dataset (N = 400), we found PCMF model coefficients for the
FBXL2 gene reveal a cluster hierarchy between GBM, lung, and breast cancer while a two-step
approach does not (Fig. 2a-c). The branching structure reflects the suspected role of FBXL2 as a
metastatic biomarker of breast-to-lung metastasis [66] and suggests a druggable target [18]. In Fig.
2d, correlations between the PCMF score and PRLR gene expression reveal strong slope differences
between the three cancer tumor types. PRLR is a mammary proto-oncogene [28, 52], and a suggested
prognostic biomarker of GBM progression (higher expression with shorter survival in males) [2] and
therapeutic target [1, 52]. Interestingly, PRLR is strongly but oppositely associated with the GBM
(R = −0.81) and breast tumor clusters (R = 0.45), as suggested in literature on triple-negative
breast cancer (higher expression associated with lower recurrence and longer survival [44]).

Table 1: Clustering accuracy on real-world datasets (“MV” abbreviates “Multi-view”).
(“X” indicates computationally infeasible to run. “T” indicates infeasible due to run time out.)

NCI SRBCT Mouse Tumors Tumors-Large MNIST Fashion Synthetic Penguins-MV COVID-19-MV NCI-MV SRBCT-MV Mouse-MV Tumors-MV
[30, 50] [30, 37] [61, 38] [26] [26] [17] [71] [32] [55] [30, 50] [30, 37] [61, 38] [26]

Variables (p) 6, 830 2, 318 16, 944 11, 931 11, 931 784 784 1, 000 2; 2 403; 382 1, 000; 100 1, 000; 100 1, 000; 100 1, 000; 100
Samples (N ) 64 88 125 142 400 36, 000 36, 000 100, 000 342 45 64 88 125 142
Classes 13 4 7 3 3 6 6 4 3 3 13 4 7 3

PCMF 43.79% 51.8% 73.6% 92.25% 100.00% 99.93% 99.94% 100.00% — — — — — —
LL-PCMF 64.06% 55.42% 80.00% 97.89% — — — — — — — — — —
P3CA — — — — — — — — 98.25% 91.11% 56.25% 65.06% 63.20% 98.59%
PCA + K-means [33] 39.06% 40.96% 45.60% 50.00% 89.75% 29.64% 45.00% 50.09% — — — — — —
CCA + K-means [34] — — — — — — — — 79.82% 51.11% 31.25% 37.35% 27.20% 50.70%
Ward [30] 56.25% 40.96% 46.40% 94.37% 90.50% –X– –X– –X– 96.78% 68.89% 51.56% 40.96% 30.40% 94.36%
Spectral [30] 43.75% 43.37% 45.60% 93.66% 92.00% –X– –X– –X– 96.78% 82.22% 50.00% 43.37% 40.00% 93.66%
Elastic Subspace [74] 59.38% 49.40% 73.60% 94.37% — — — — 97.37% 51.11% 48.43% 40.96% 52.00% 94.37%
gMADD [47, 54] 42.19% 46.99% 42.40% 72.54% 61.50% –X– –X– –X– 67.25% 51.11% 39.06% 44.58% 35.20% 58.45%
HDCC [3, 8] 59.38% 34.94% 29.60% 50.00% — — — — 88.01% 40.00% 51.50% 38.55% 29.60% 50.00%
Leiden [63] 50.00% 46.99% 68.00% 71.12% 66.25% 60.62% 38.31% 10.88% 40.06% 82.22% 48.43% 46.99% 49.60% 71.13%
Louvain [5] 42.19% 48.19% 76.00% 94.34% 72.25% 69.88% 42.26% 10.85% 65.20% 82.22% 45.31% 48.19% 60.80% 93.66%
DP-GMM [22] 46.88% 43.37% 54.40% 85.92% –X– –X– –X– –X– 68.42% 73.33% 45.31% 44.58% 39.20% 92.96%
hCARP [68] 43.75% 46.99% 36.00% 75.25% –X– –X– –X– –X– 79.82% 71.11% 34.37% 43.37% 30.40% 93.66%
DEC [72] 45.31% 71.08% 46.40% 99.25% –T– –T– –T– 86.67% 94.37% 88.89% 54.69% 65.06% 33.60% 94.37%
IDEC [29] 48.44% 67.47% 61.60% 92.96% 86.50% 55.25% 48.98% –T– — 73.33% — — — —
CarDEC [39] 51.56% 40.96% 75.20% 90.14% –X– –X– –X– –X– — 84.44% — –X– — —

4 Conclusion

Facilitating adoption of AI-enabled precision medicine by professionals will require explainable,
sensitive, and scalable methods appropriate for biomedical data. To meet this need, we have introduced
an interpretable joint clustering and embedding strategy using a modular convex clustering penalty,
and instantiated it in three scalable algorithms that solve linear (PCMF), nonlinear (LL-PCMF), and
multi-view (P3CA) problems. We show that our method performs competitively across biomedical
datasets against 14 commonly-used clustering approaches (including three deep learning methods).
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