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Abstract

In machine learning, classification tasks serve as the cornerstone of a wide range of
real-world applications. Reliable, trustworthy classification is particularly intricate
in biomedical settings, where the ground truth is often inherently uncertain and
relies on high degrees of human expertise for labeling. Traditional metrics such as
precision and recall, while valuable, are insufficient for capturing the nuances of
these ambiguous scenarios. Here we introduce the concept of aberrant predictions,
emphasizing that the nature of classification errors is as critical as their frequency.
We propose a novel, efficient training methodology aimed at both reducing the
misclassification rate and discerning aberrant predictions. Our framework demon-
strates a substantial improvement in model performance, achieving a 20% increase
in precision. We apply this methodology to the less-explored domain of veteri-
nary radiology, where the stakes are high but have not been as extensively studied
compared to human medicine. By focusing on the identification and mitigation
of aberrant predictions, we enhance the utility and trustworthiness of machine
learning classifiers in high-stakes, real-world scenarios, including new applications
in the veterinary world.

1 Introduction

The challenge of building robust and reliable machine learning models in the classification setting has
largely gravitated towards improving accuracy, precision, and recall ([1], [2], [3]). These metrics serve
as the yardstick for evaluating the performance and reliability of models in a myriad of applications.
However, particularly in settings where boundaries between labels are determined based on value
judgments rather than stark delineations, we begin to care about how these models made their
predictions. This is particularly important in biomedical applications where label ambiguity reflects
inherent uncertainty in medical diagnoses and prognoses [4].In these scenarios, both true and false
predictions could be considered valuable. This is because each prediction might capture a different
facet of the underlying medical uncertainty, reflecting the ambiguity intrinsic to the labels themselves.
However, while some predictions can be justified as capturing this uncertainty, others might be
completely off the mark—either due to model limitations or misinterpretation of the data. In such
cases, these "unjustifiable predictions" could mislead clinicians and compromise patient care.

This paper focuses on what happens when these types of predictions are made. We define an aberrant
prediction, which refers to a significantly illogical or unjustifiable prediction made by a classifier. For
instance, a study by Lechner et al. [5] discusses a real-world case where a self-driving car focuses on
the bush on the side of the road to make its predictions. While the model may be technically ‘correct,’
in its final action-prediction, its reasoning can confound human observers, thereby undermining the
system’s reliability and eroding trust in the model’s decision-making process.
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1.1 Problem Statement

Imagine a state-of-the-art machine learning model designed to assist veterinary medical practitioners
by suggesting whether fractures are present in animal X-rays. This model is well-calibrated [6],
ensuring that its output probabilities accurately reflect real-world likelihoods. It also performs
consistently across various subgroups of data such as age, gender, and breed of the animals. Consider
a specific scenario where the patient’s X-ray shows an unusual pattern caused by a foreign object.
In this case, the model might predict the presence of a fracture, even assigning it a high probability
score, indicating strong confidence in this diagnosis. However, the model did not make this prediction
based on clinical fracture features in the bone region. This would be an aberrant prediction. Note
that even if the X-Ray actually has a fracture in it, the prediction is still aberrant if it is based on the
wrong input features.

Definition

In the classification setting, we have input variable X , a categorical variable Y ∈ {1, 2, . . . , k}, and
a trained neural network f which maps some x to a categorical distribution p = {p1, . . . , pk} over k
classes {y1, . . . , yk}: f : D → ∆ where ∆ is the k − 1 dimensional standard probability simplex, D
is the data distribution, and ∆ = {p ∈ [0, 1]k|

∑k
i=1 pi = 1}.

A model uses discriminative features Cx to make its prediction f(x) = p, and each class label is
associated with true features Cy. Cy is unknown to the network and inherent to the properties of
the object being labeled. In an ideal network Cx = Cy, meaning the predictions are based on the
true, unknown features associated with the class label y. A prediction is aberrant if Cx significantly
differs from Cy under some dissimilarity measure d:

d(Cy, Cx) > λ, where λis some dissimilarity threshold. (1)

Implementation-wise, the discriminative features of a classifier can be obtained from the saliency
maps learned by the network [7, 8, 9, 10]. The true features can be estimated from bounding-box
ground truths around the relevant regions of the image.

1.2 Causes of Aberrant Predictions

Aberrant predictions have a number of causes. They may arise from limitations in the training dataset,
which is generally a sparse sampling of the true distribution. They could also stem from the model’s
architecture, which might misgeneralize based on the features it has learned. Additional sources of
error could include mislabeling or the presence of correlated but non-causal features in the training
data (for instance, the presence of a right-side-marker (R) every time an x-ray discovers a fracture).

From a probabilistic standpoint, the model’s aberrant predictions can be understood as a limitation in
capturing the full support of the data distribution, particularly long-tail events. It’s crucial to note that
real-world scenarios are filled with sub-optimal acquisition techniques and edge cases that may not
be represented in training sets, and so most real-world applications involve a long tail distribution of
edge cases.

In light of the above, the main contributions of this paper are:

1. Definition of aberrant predictions We propose a definition for aberrant predictions which
provides a grounded underpinning for future work. This aids in distinguishing aberrant from
regular predictions.

2. Veterinary Radiology application This paper introduces a novel framework for identifying
aberrant predictions. It goes beyond traditional metrics and uncertainty quantification
techniques to find classifications that could have significant adverse real-world consequences.
Particularly, we apply this framework to the domain of veterinary radiology which remains
underexplored within the machine learning community.

3. Enhancement of Model Value By identifying aberrant predictions, our framework allows a
model to make robust, trustworthy predictions. This allows it to be deployed in real-world
situations with reasonable failure-modes, which is a necessity in many application areas.
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2 Related work

Several approaches have been proposed to address the challenges posed by ambiguous or uncertain
labels, or to make sure models are well-calibrated in their predictions. This section explores prior
work in reliability, robustness, and calibration in the context of aberrant predictions.

Classifier Calibration: The study of model calibration explores the reliability of model predictions,
first explored by [11]. Calibration has been well-defined in recent years by [6]; In particular, a well-
calibrated model predicts class probabilities that faithfully estimate the true correctness likelihood
of their predictions. A model is perfectly calibrated if for some data distribution D, for all input
pairs (x, y) ∈ D, if a model predicts pi = 0.8, then 80% such pairs have yi as a ground truth
label. Work on calibration can be broadly categorized into post-hoc methods which calibrate models
after training ([12], [13], [14]), regularization methods during training ([15], [16], [17], [18]), data
augmentation methods ([19], [20]), and alleviating miscalibration by injecting randomness with
uncertainty estimation ([21], [22], [23]). However, even a perfectly-calibrated model can make
aberrant predictions.

Uncertainty quantification: Uncertainty quantification (UQ) aims to differentiate between various
sources of uncertainty in model predictions [24]. Uncertainty can be broadly modeled with Bayesian
techniques ([25], [26], [27]) and ensemble learning techniques ([28], ). [29] makes a distinction
between distributional uncertainty, data uncertainty, and model uncertainty to estimate the distribu-
tional uncertainty. [30] defines aleatoric uncertainties to capture noise inherent in observations, and
epistemic uncertainties as accounting for uncertainty in the model, which disappears with enough
data. Although UQ provides a nuanced understanding of the types of uncertainties associated with
model predictions, it does not address their nature: a model can make a low-uncertainty aberrant
prediction.

Conformal Predictions: Conformal predictions extend the idea of uncertainty quantification by
constructing prediction regions that contain the ground truth with a specified degree of confidence
[31]. Recent work in conformal prediction focuses on procedures with good performance on particular
desiderata, like small set sizes [32], balanced coverage across features space [33], [34], [35] and
errors balanced across classes [32] [36] [37]. However, like UQ, conformal predictions only provide
a measure of uncertainty about ground truth and do not delve into situations where the model’s
output corresponds to the ground truth, but in which the information the model used to provide that
prediction was aberrant.

These methodologies primarily focus on quantifying predictive uncertainty or ensuring a certain level
of reliability in model predictions. However, none venture into analyzing what the kinds of predictions
the models make say about what parts of the data the model is using, and thus in which situations
predictions become unreliable. A model’s performance is ultimately bounded by the diversity and
size of the data it was trained on and the capacity of its architecture, and even well-calibrated and
aligned models can make aberrant predictions. This is particularly problematic in complex, real-world
scenarios where anomalies and rare events can occur.

The literature on this issue remains relatively sparse. The exploration of aberrant predictions, their
identification, and their mitigation form the cornerstone of our investigation. A thorough understand-
ing of these types of predictions enhances the practical utility and trustworthiness of machine learning
models in real-world applications, particularly in domains laden with label uncertainty and which
demand predictive trust.

3 Methods

We propose a strategy to improve an AI-aided veterinary radiology system by finding aberrant
predictions. The system is designed to identify and suggest potential fracture regions in radiographic
films, expediting diagnosis. Regions identified as suspicious, even if ultimately incorrect, hold value
for clinicians. However, aberrant predictions risk eroding their trust in the technology. To address
this, we leverage an existing production solution as our baseline, which uses a limb-fracture classifier
built on the EfficientNet V2 XL architecture.[38].
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3.1 Workflow

We show our framework in Figure 1. We first generate saliency maps from the production classifier
to crop the original radiographic images. These cropped regions are then embedded and subjected to
unsupervised clustering to distinguish between logical and aberrant predictions. This methodology
allows us to move beyond simply asking where the fracture is, and instead try to determine whether
the highlighted region logically resembles a fractured area.

Figure 1: Workflow outlining the steps to identify aberrant predictions. C represents the cluster. yk
and yl are the classification results.

Saliency maps

Saliency maps are employed to discern the regions in the images that are pivotal in driving the
classifier’s decisions [39]. We employed Grad-CAM [8] for generating saliency maps due to its ease
of application, despite certain cited shortcomings [39]. It is pertinent to note that while Grad-CAM
sufficed for our objectives, alternative methods like SHAP (SHapley Additive exPlanations) could be
explored in other projects for potentially more nuanced insights [40, 41].

Input preprocessing

The original images are cropped based on the generated saliency maps to isolate the discriminative
regions influencing the classifier. The cropped images and saliency maps are then concatenated along
the channel dimension to encapsulate the pertinent information for further analysis.

Aberrant prediction classifier

An encoder model, built on a ConvNeXt architecture [42], is utilized to embed the concatenated
images into a lower-dimensional space. Although our approach employs supervised learning with a
small labeled dataset to fine-tune the embeddings for identifying aberrant predictions, a Variational
Autoencoder [43] or other unsupervised frameworks like SPICE [44] or SCAN [45] could be
employed for a fully unsupervised approach, albeit potentially at the cost of lower performance [46].

Nearest neighbors clustering

Post-embedding, a clustering step employing Nearest Neighbors (KNN) is performed to segregate the
images into distinct groups, each indicative of either logical or aberrant classification predictions [47,
48, 49]. This method allows for discerning whether highlighted regions logically resemble fractured
areas.

We employ a dual methodology to determine the ideal number of clusters. First, we conduct a
systematic sweep over a range of clusters, and use Silhouette Score [50] and Adjusted Rand Index
Score [51] to quantitatively evaluate the clustering outcomes. This data-driven approach serves as the
first filter in determining the optimal number of clusters. Second, we prioritize interpretability by
manually inspecting the images to identify visual features that could serve as natural cluster centers.
We aim to ensure that the clusters represent distinct, interpretable categories that reflect the underlying
structure of the data. Through this inspection, we identify a set of major visual features that we
believe the model should capture. These features include vertical lines, horizontal lines, oblique lines,
absence of lines, zoomed-out images, and the presence of medical devices among others.
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We ultimately select six clusters. This choice aligns with the major visual features we wish the model
to recognize, achieving a balance between optimization and interpretability. Figure 2 showcases a
representative sampling of images belonging to each cluster. This categorization helps in understand-
ing the nature of the classifier’s outputs and enriches insights into whether the clusters are being
formed based on features that are both interpretable and logically coherent.

(a) Vertical Lines (b) No Lines (c) Oblique Lines

(d) Medical Device (e) Zoomed Out (f) Horizontal Lines

Figure 2: Sampling of images belonging to each targeted cluster. Note that these images have not
been used for training and are only aimed at providing a better understanding of the dataset and
holistic cluster performance.

This workflow allows us to more deeply understand a classifier’s behavior, especially in the realm of
aberrant predictions, and paves the way for more interpretable and reliable machine learning models
in medical imaging applications.

3.2 Data

The study utilizes a dataset comprising 3970 veterinary radiology images associated with limb
fractures (80/20 train test split). The identification of aberrant predictions is facilitated through the
analysis of regions within the images that significantly influence the classifier’s predictions. To
further elucidate the framework’s capability in identifying aberrant predictions, two complementary
evaluation methods were employed.

1. Saliency-map-crop evaluation The saliency maps were initially evaluated using fracture
mask bounding box labels provided by expert veterinarians. The metric we employ, which
we refer to as Saliency Crop Accuracy (SCA) is a specialized adaptation of the Intersection
over Union (IoU) metric commonly used for object detection tasks [52]. Unlike traditional
IoU focusing solely on overlapping areas between predicted and ground-truth bounding
boxes, SCA considers the centroids’ distance when no overlap occurs, introducing a decay
factor proportional to the inverse of this distance. A high SCA value indicates a likely
accurate prediction, while a zero value signifies misdirection in the saliency map. This
evaluation suggests that all aberrant predictions will exhibit a very low saliency map accuracy
metric value, which serves as a quantifiable measure of the aberrance of the predictions.

2. Visual inspection However, the saliency map metric alone may not capture the complete
picture, especially in scenarios where reasonable-looking regions did not contain a fracture
(i.e. the SCA will be low, but the prediction is not aberrant). To address this limitation,
a visual inspection of the predictions in each scenario was carried out. This dual-method
evaluation motivates a more holistic approach to understanding ‘accuracy’, emphasizing
the importance of not only examining the alignment between the saliency maps and ground
truth but also scrutinizing the logical coherence of the identified regions.

5



4 Experiments

The primary objective of the experiments is to validate the efficacy of the proposed framework in
identifying aberrant predictions, leveraging expert evaluations as a benchmark. In addition, we add
an interpretability analysis, based on the visual features handcrafted in Figure 2. Finally, we evaluate
the production impact of the proposed solution.

Evaluate clusters based on Saliency Crop Accuracy (SCA)

To assess the framework’s capability to identify aberrant predictions, we examined the density
distribution of each cluster concerning the expert evaluations leveraging Kernel Density Estimations
(KDE) [53] (Figure 3A). The underlying hypothesis is that clusters formed around images where the
saliency map contains aberrant predictions should show a distinct density distribution when contrasted
with clusters formed around images where the saliency map accurately indicates a fractured region.

A box-plot depicting the distribution of accuracy for each cluster was generated (Figure 3B). It was
observed that clusters containing aberrant predictions displayed lower accuracies, suggesting the
presence of aberrant predictions, while clusters devoid of them had higher accuracies, indicating
logical predictions. This analysis substantiated the capability of our framework in segregating aberrant
predictions from logical predictions, aligning with expert evaluations.

(A)
(B)

Figure 3: (A) KDE of clusters with respect to expert evaluations. Distinct peaks or modes in the
density distribution indicate a high concentration of similar expert evaluations, potentially signaling
the consistency of either logical or aberrant predictions within that cluster. This is the case for cluster
4, for instance, which shows a high concentration of aberrant predictions (low SCA), or cluster 0,
showing the opposite. (B) Box-plot showing the distribution of salience map accuracy for each cluster.
The box-plot echoes the insights from the KDE plot. Specifically, clusters 1 and 4 stand out for
containing a significant proportion of aberrant predictions, reinforcing the observations made through
the density distribution analysis.

Qualitative human evaluation

A qualitative evaluation was conducted to ascertain the practical relevance and justifiability of the
mistakes made by the original production classifier. A sampling of the low SCA-value images from
each cluster was reviewed by expert radiologists based on whether the highlighted regions were
justifiably located for fracture assessment. Figure 4 shows an example of low-SCA crops for each
cluster to illustrate this process. Note that not all clusters contain over 8 low-SCA crops for the
display.

The expert radiologists provided their assessments on the nature of the mistakes and the relevance of
the identified fractures. For instance, it was unanimously agreed that all the fractures identified in
cluster 0 were of interest and held significant value for the business production scenario, particularly
with respect to aiding accurate and trusworthy fracture diagnosis. The aberrant predictions rate was
below 1% for cluster 3 and below 5% for clusters 2 and 5. Clusters 4 and 1 contain most of the
aberrant predictions with 81% for cluster 4 and 25% for cluster 1.
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(a) Cluster 0 (b) Cluster 1 (c) Cluster 2

(d) Cluster 3 (e) Cluster 4 (f) Cluster 5

Figure 4: Examples of images with low-SCA values for each cluster. Clusters 0 and 3 have fewer
than 8 mistake examples. These images serve as illustrative samples of what low-SCA images from
each cluster would look like

Increased interpretability of the results

To obtain a more holistic understanding of model performance, we use 6 major visual features
identified during data analysis as a guide for understanding the model’s decision-making process.
Figure 5 displays the performance of the clustering system on example-saliency crops with each one
of the major visual features.

All of the saliency crops selected as representative of vertical lines were assigned by the KNN to
cluster 2, and all the horizontal lines to cluster 5, along with most oblique lines. Interestingly, different
views of medical devices appear to be clustered separately, with frontal views of the plate found in
cluster 3 and crops containing the screws in cluster 0. The zoomed out crops, which mostly represent
aberrant mistakes, are found in cluster 4. Finally, the crops without lines are mostly found in cluster
1.

(a) Vertical Lines (b) No Lines (c) Oblique Lines

(d) Medical Device (e) Zoomed Out (f) Horizontal Lines

Figure 5: Performance of the clustering system on saliency crops with different visual features. The
title of each sub-image indicates its final predicted cluster. Different colors are used to highlight the
diverse clusters. This visualization aids in understanding how the images were ultimately categorized
by the model.
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Production Evaluation

While precision and recall fail to completely describe the performance of the model, they can serve as
valuable benchmarks for getting a rough intuition in model evaluations. Especially when accounting
for the impact of aberrant mistakes in them.

Under this light, we compare the new method with simply using the previously existing classifier
approach (used to generate the saliency maps). We show our results in Figure 6. The original model
had a precision of 76.8%. The final precision results for the best model pushed to production are
91.5% for cluster 1, 91.8% for cluster 2, 100% for clusters 0 and 3, and 95.6% for cluster 5. Compared
to the previously existing model this implies an improvement of up to over 20% for all the clusters
without aberrant predictions. In turn, recall, excluding aberrant predictions, is only reduced by 7.2%.

The increase in overall precision as a result of this method is good but not the main thing we want to
emphasize. The primary value-add is that the types of false positives are better; the mistakes become
truly ambiguous, rather than blatantly wrong.

Figure 6: Cluster precision after evaluation in the production model. The precision in clusters 0, 2,
3, and 5 is dramatically better than the original model. Clusters 1 and 4 contained mostly aberrant
predictions and have a precision of 0%, with no true positives.

5 Discussion

The experiments in Figure 3 reveal that using KDE and box plots in tandem is effective for under-
standing the behavior of our model. The distinct distribution patterns observed in different clusters
support the idea of excluding clusters with a high concentration of aberrant predictions (clusters 1
and 4) from the production pipeline.

The proposed framework significantly improved precision by 20%, as shown in the Production
Evaluation. This increase in precision in clusters ‘devoid’ of aberrant predictions illustrates the
effectiveness of our methodology. The comparison with the previous model, which had a precision of
76.8%, demonstrates the robustness and applicability of our framework in a production environment.
The qualitative human evaluation further validated the effectiveness of our framework. The agreement
among expert radiologists, especially on images from cluster 0, highlights the practical utility and
potential real-world impact of our framework in veterinary radiology.

In summary, the experiments validate our framework’s capability in not only identifying fracture
locations but also in ensuring the logical accuracy of the highlighted regions, addressing a critical
aspect in veterinary radiology machine learning applications.

5.1 Limitations

A significant drawback of our method is the need for manual re-clustering after model retraining.
This manual intervention not only introduces a resource and time overhead but may also introduce
human bias into the process. We also rely on the assumption that clusters with a high concentration
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of aberrant predictions should be excluded from the production pipeline. There may be situations in
which doing this has lower effects on standard metrics like precision and recall. There are ways to
mitigate this – for instance, by clustering based on the performance of a test set – but this is at the
cost of losing interpretability, since we won’t know what’s in the new clusters.

Lastly, the generalizability of the framework across different domains of machine learning remains
to be fully explored. While we advocate for the broad applicability of aberrance-based methods,
the efficacy of the proposed framework in other domains and the manual intervention required for
re-clustering post-model retraining may pose challenges to its widespread adoption.

6 Conclusion

The paper introduces and defines the concept of aberrant predictions, offering a new lens with which
to evaluate machine learning models beyond traditional metrics. We develop a novel framework
which uses the concept to significantly improve model precision and interpretability in veterinary
radiology, fostering a better understanding between ML models and medical practitioners. This
methodology lays a strong foundation for future research aimed at minimizing aberrant predictions
and enhancing the real-world clinical utility of ML models. We use veterinary radiology as a case
study to showcase the utility of our method, but we argue that aberrance-based methods have high
practical utility across many domains of machine learning.
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