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Abstract

Geological storage of CO2 is a key climate change mitigation strategy. As important
as location selection and injection planning is monitoring that the gas is contained
for long periods of time. We introduce a fully 3D, deep learning-based approach for
the joint inversion of time-lapse surface gravity and seismic data for reconstructing
subsurface density and velocity models. The target application of this proposed
inversion approach is the prediction of subsurface CO2 plumes as a complementary
tool for monitoring CO2 sequestration deployments. Our joint inversion technique
outperforms deep learning-based gravity-only and seismic-only inversion models,
achieving improved density and velocity reconstruction, accurate segmentation, and
higher R-squared coefficients. Future work will focus on validating our approach
with larger datasets, simulations with other geological storage sites, and, ultimately,
field data.

1 Introduction

Reducing CO2 concentration in the atmosphere is critical to control climate change. These efforts
involve implementing various technologies, such as efficient fossil-based fuel consumption, expanding
absorption sources through afforestation/reforestation, and adopting CO2 capture, utilization, and
storage (CCUS) techniques. Among the CCUS technologies currently deployed worldwide, CO2

geological storage has emerged as a promising approach. This technology involves capturing CO2

from fixed sources or directly from air, then injecting it into underground formations.

Injecting CO2 is just part of the process; during and after injection, ensuring the integrity of these
geological sites necessitates ongoing monitoring. Regulatory authorities mandate the demonstration
of storage volume containment and the detection of any potential CO2 leakage or unwanted migration.
Given the time scales involved in monitoring CO2 storage sites, traditional monitoring techniques
based on borehole sensors or surface seismic monitoring may not be practical or economically viable.
Remote sensing by other modes, such as gravity, might be economically viable and technically
feasible if combined with traditional seismic approaches.

Once data from the field is recorded, geophysical inversion techniques are deployed. These widely
used techniques for interpreting data sets and recovering subsurface physical models can be crucial
in monitoring CO2 storage sites [1, 2]. The recovered models, which encompass parameters such
as velocity, density, resistivity, or saturation, provide essential information about the structural and
compositional characteristics of the subsurface. Integrating multiple datasets collected over the
same area is known as geophysical inversion [3, 4]. This approach enhances the reconstruction
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of subsurface structures and facilitates the identification of changes or anomalies associated with
activities like CO2 storage [5]. However, effectively integrating the information embedded in multiple
geophysical datasets presents a practical challenge from a computational point of view (i.e., storage,
memory, and compute time), which compounds the inherent difficulties of solving nonlinear inversion
problems [6]. These challenges especially become apparent when working with realistic 3D synthetic
or field data.

In this work, we develop an effective supervised 3D deep learning (DL)-based inversion method to
recover high-resolution subsurface CO2 plumes from both surface gravity and seismic data. To the
best of our knowledge, this is the first fully 3D approach for the joint inversion of surface gravity and
seismic data, which is tested on realistic, physics-simulated CO2 plumes.

2 Previous Work

Conventional inversion methods find a model with the minimum possible structure and whose forward
response fits the observed data [7–9]. The minimum structure is achieved by minimizing model
roughness through a least squares regression, resulting in a smooth model. While the least squares
regression produces smooth subsurface models, the predicted models are often larger and exhibit
smaller density values than the actual model [10, 11].

DL is an emerging alternative to traditional geophysical inversion [12–15]. Over the last several
years, deep convolutional neural networks (CNNs) have achieved state-of-the-art results in various
computer vision applications such as image classification, segmentation, and generation [16–18].
CNNs have recently been used for inversion of seismic [19–21], electromagnetic imaging [22, 23],
electrical resistivity [24, 25], and time-lapse surface gravity data [26–29]. However, these works
focus solely on inverting a single modality and do not explore joint inversion with multiphysical data.

Using simulated CO2 plumes from the onshore Kimberlina site, Um et al. developed a 2D DL archi-
tecture to perform a joint inversion with seismic, electromagnetic, and gravity data [5]. Additionally,
they use a modified version of their architecture to invert their imaging data types individually. In
each case, their DL-based approach can recover CO2 plumes. However, their approach still does not
perform DL-based inversion in a fully 3D setting. Hu et al. present a physics-informed DL-based
approach for inverting electromagnetic and seismic data for recovering subsurface anomalies [3].
While their approach successfully reconstructs the anomalies, this approach also uses 2D data and
does not consider 3D data or the computational cost of implementing physics-informed inversion
for such data; as opposed to our work, which implements fully 3D joint inversion with seismic and
surface gravity data.

3 Problem Statement

Classical inversion techniques (for seismic [6]) aim to minimize a cost function that measures the
difference between the forward response of a given subsurface model and the observed data when the
subsurface is directly stimulated. Let F be our forward operator, m be a subsurface model, and dobs
be the observed data during stimulation. Then the classical inversion problem can be written as

min
m

||F (m)− dobs||22. (1)

Note that this problem takes a single input (i.e., dobs) and produces a single predicted subsurface
model.

In contrast, joint inversion is an extension of the classical formulation given by (1) that maps multiple
inputs (i.e., gravity, seismic, and electromagnetic data) to multiple outputs (i.e., density, velocity, and
resistivity models). For a given number of inputs d1

obs, . . . ,d
n
obs and appropriate forward operators

F1, . . . , Fn, our joint problem is given by

min
m1,...mn

n∑
i=1

||Fi(m
i)− di

obs||22 + α
∑
i̸=j

Φ(mi,mj), (2)

where Φ is a coupling function used to link different physical models via known petrophysical
relations or other metrics like SSIM (in a Machine Learning context), and α is a parameter controlling

2



the contribution of the coupling term [30, 31]. Joint inversion is much more time-consuming than
independent inversions because of the additional terms in the cost function and the need to exchange
information between different models via the coupling terms [3]. There also is a need to determine
or adjust the weighting parameter α, which adds another layer of complexity to the standard joint
inversion method [3].

Our goal is to train a DL-model that can accurately predict the changes in subsurface density and
velocity given corresponding variations in surface gravity and seismic data.

4 Data Preparation

Located 60km off the western coast of Norway, the Johansen formation [32] is a promising CO2

storage site with a theoretical capacity exceeding 1Gt of CO2. The formation encompasses an aquifer
with an approximate thickness of 100m, spans 100km in the north-south direction and 60km from east
to west, and is at a depth that ranges from 2,200m to 3,100m below sea level. This setting provides
optimal pressure and temperature conditions for injecting CO2 in a supercritical state.

We generate data based on the Johansen formation using the process described in [29]. That is, we
generate a number of distinct geological realizations that vary in porosity and permeability. We
conduct a fluid flow simulation that assumes a 100-year injection period followed by a 400-year
migration period. This process produces subsurface changes in density. To convert these density
models to Vp models for forward seismic modeling, we use the following conversion:

Vp(r) =

√
κ+ 4

3µ

ρ(r)
, (3)

where r is the spatial coordinate in our model, κ = 8.14GPa is the bulk modulus, µ = 1.36GPa is
the shear modulus, and ρ is the density value [33, 34]. Here, we assume that the formation comprises
80% shale and 20% sandstone to get the values for κ and µ [35, 36]. Using this process, we generate
180 density/velocity pairs. For preprocessing, we resample each density and velocity model from
their original resolution of 440×530×145 to 256×256×128.

4.1 Modeling Gravity

Given a density perturbation ∆ρ observed between the current and original (i.e., base) acquisition,
the gravity field recorded at a station located at r′ can be expressed as:

g(r′) = γ

∫∫∫
V

r− r′

||r− r′||32
∆ρ(r)dV (4)

where V is the volume of the reservoir, and γ is Newton’s gravitational constant. For more details on
gravity modeling, see [29]. Assuming that gravity sensors are placed in a uniform grid every 500m,
our surface gravity maps are size 88×106. An illustration of a change in surface gravity for a given
density permutation in the subsurface is shown in Figure 1 (right).

4.2 Forward Seismic Modeling

Forward seismic modeling approximates the behavior of seismic waves propagating through a
mechanical medium m and is given by the elastic wave equation:

∂2u

∂t2
−V2

p∇(∇ · u)−V2
s∆u = f , (5)

where u = u(x, y, z, t), is the seismic wave displacement, Vp is P-wave velocity (compres-
sion/rarefaction), Vs is S-wave velocity (shear stress), and f is the perturbation source (i.e., shot)
function [37]. While (5) more accurately describes seismic wave propagation, it is often preferred
(as in this work) to approximate the solution u by the acoustic wave equation, which assumes only
P-waves and requires less computational resources and parameters, as compared to solving (5) [37].

3D seismic data consumes a large amount of memory and storage, up to dozens of TB for the raw
data in our case. We compute spatial decimation evenly, but temporal, which in seismic signals
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represents depth, decimation favors samples that convey information in the area of interest (i.e., the
reservoir). Further, we collapse our seismic data by adding the recorded data from each shot and then
boost the later time signals by multiplying by a monotonically increasing function. This method is
fully described in [37]. Finally, we resize each collapsed and boosted seismic cube from its original
resolution of 167×154×941 to 256×256×512 by first taking every other slice (i.e., time step) in the
z-direction and then linearly interpolating to the final resolution.

Like forward gravity modeling, we look at the differences between the original or base seismic data
and the current data. Figure 1 (left) illustrates an example of the change in seismic data from the
original and current acquisitions.

Figure 1: (Left) Example of seismic difference cube. (Right) Illustration of a change in surface
gravity for a given density perturbation in the subsurface [29].

5 Methods

5.1 Network Architecture

We use a modified 3D U-Net architecture to map 2D surface gravity maps and 3D seismic cubes to
subsurface changes in density and velocity. Each input is fed into a dedicated encoder branch. The
first step for the surface gravity encoder branch is to resize the input to match the reservoir geometry
via linear interpolation. Then the 2D features are converted into a 3D volume using a pointwise
convolution, where the number of channels equals the subsurface model’s depth (i.e., the output).
This resulting 3D volume is the input to the first 3D encoder branch of the network. The seismic
encoder branch starts with a 3D seismic cube as input. However, the seismic cubes are larger in the
depth dimension than the network output. To address this, we use two convolutional layers with
strides 1×1×2 to reduce the depth dimension of the seismic cube from 512 to 128. The resulting
resized seismic features are the input to the second encoder branch of our architecture. In each
resolution level of our encoder branch, we apply two convolutional layers and downsampling via
max pooling four times. A convolutional layer consists of two convolutions, each followed by batch
normalization and a ReLU non-linearity.

At the bottleneck of our architecture, we concatenate the encoded seismic and gravity features
and apply two convolutional layers to merge the individual features. We also apply autoencoder
regularization. However, because we have two inputs, we separately decode the seismic and gravity
features (before concatenation and convolution) to reconstruct their respective inputs.

Our decoder branch upsamples the combined features and concatenates them with the corresponding
features from the encoder branches in the skip connections. Like with the network proposed by [29],
we split the output of the decoder branch into three separate outputs: two regression branches to
predict density and velocity and one for segmenting the plume. Figure 2 shows a detailed sketch of
our proposed architecture.
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Figure 2: Detailed sketch of our proposed architecture for jointly inverting surface gravity and seismic
data. Our architecture uses two separate encoder branches for each input and decodes them jointly.
The output of the decoder branch splits into three separate outputs: two regression branches to
predict density and velocity and one for segmenting the plume. Additionally, this architecture uses
autoencoder regularization.

5.2 Loss Function

Our loss function consists of three components - segmentation, regression, and autoencoder losses.

The segmentation loss is the Generalized Dice Loss (GDL) proposed by Sudre et al. [38]. Unlike the
original Dice loss proposed by [39], the GDL uses weighting terms to account for class imbalance.
This loss function is given by

Lgdl =

∑C
k=1 wk||T k − P k||22∑C

k=1 wk (||T k||22 + ||P k||22)
, (6)

where C denotes the number of segmentation classes, P k is the k-th class in the predicted mask,
and T k is the same for the ground truth. The term wk is the weighting term for the kth class and

is given by wk =

(
1∑C

j=1
1

Nj

)
1
Nk

. Here, Nk is the total number of pixels belonging to the class k

over the entire dataset. Note that the weights wk are pre-computed and remain constant throughout
training. In our case, the number of segmentation classes equals two; background and foreground.
The computed class weights are approximately 0.0015 and 0.9985 for the background and foreground
classes, respectively.

The regression and autoencoder losses use the mean squared error loss for their respective inputs.
For a general input pair (T, P ), this loss is given by 1

N ||T − P ||22. For the regression tasks (i.e.,
density and velocity reconstruction) the inputs to this loss function are the true and predicted density
and velocity models. For the autoencoder branches, the inputs to this loss function are the true and
reconstructed gravity and seismic inputs.

Our overall loss function is a weighted convex combination of the previously described components
and is given by

L = 0.375Lρ + 0.2Lgdl + 0.375Lv +
0.05

2

(
Lgrav
ae + Lseis

ae

)
, (7)

where Lρ, Lgdl, Lv, Lgrav
ae , and Lseis

ae are the density model, segmentation, velocity model, gravity
autoencoder, and seismic autoencoder losses, respectively. Note that we select these weights via a
partial grid search.
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5.3 Training and Testing Protocols

To train our neural networks, we use the Adam optimizer [40] with an initial learning rate of 0.001
and a cosine decay schedule with restarts [41]. We train our model to convergence (≈ 400 epochs)
with a batch size of 8. We use 80% of our dataset as a training set, use 10% of the training data as
a validation set, and use the remaining 20% of the data as a test set. To compare the effect of joint
inversion vs. inversion with only gravity or seismic data, we use the architecture described in [29] for
the portions of our dataset corresponding to either gravity or seismic inversion. Note that the models
used for individual inversion only output the properties corresponding to that particular inversion
problem. For example, the network used for purely seismic inversion only produces a velocity model
as a prediction.

To evaluate the validity of our predicted inversions, we utilize the following metrics: mean squared
error in kg/m3 between the true and predicted density models, mean squared error in m/s between
the true and predicted velocity models, mean squared error in µGals between the observed data and
the gravity response of the predicted density model, the R-squared coefficient between the true and
predicted models (for density and velocity), and the Dice coefficient between the non-zero masks of
the true and predicted plume geometry.

Our models are implemented in Python using PyTorch (v2.0.1) and trained on four NVIDIA A100
GPUs [42]. At test time, our DL-based methods produce predictions of size 256×256×128. We
resample this output to the original grid resolution of 440×530×145 via linear interpolation to
produce our final prediction. Given the sample size, we develop a data parallelism approach by using
PyTorch’s Distributed Data Parallel implementation. The in-node scalability is nearly ideal, with
epochs taking 190 seconds running on 1 GPU and ending up in 45 seconds when running on 4 GPUs.

Method MSE (kg/m3) MSE (m/s) MSE (µGal) Dice
R-Squared

Density Velocity
Gravity 0.311 (0.215) - 0.601 (1.185) 0.589 (0.034) 0.769 (0.12) -
Seismic - 0.121 (0.100) - 0.579 (0.096) - 0.715 (0.175)
Joint 0.268 (0.174) 0.084 (0.057) 0.634 (1.241) 0.621 (0.038) 0.801 (0.095) 0.800 (0.095)

Table 1: Joint inversion vs. inversion with only gravity or seismic data. Here, we see that our proposed
joint inversion generally outperforms gravity and seismic-only inversion for all metrics except for
the mean squared error between the observed data and the gravity response of the predicted density
model, where the results vs. the gravity-only model are comparable.

Figure 3: Training and validation loss curves on a logarithmic scale for our DL-based joint inversion.
Here, both losses converge, indicating that our proposed joint inversion architecture successfully
learns a mapping from our surface gravity and seismic data to 3D subsurface density and velocity
models.

6 Results

We train our joint inversion model using the methods described in Section 5. Figure 3 shows the
training and validation loss curves on a logarithmic scale. This figure shows that both losses converge,
indicating that our proposed joint inversion architecture successfully learns a mapping from our
surface gravity and seismic data to 3D subsurface density and velocity models.
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In Table 1, we see that our proposed joint inversion generally outperforms gravity and seismic-
only inversion for all metrics except for the mean squared error between the observed data and the
gravity response of the predicted density model, where the results vs. the gravity only model are
comparable. Figure 4 shows a 2D cross-section slice from predictions from each model. Visually,
the density models produced by the gravity-only and our joint architectures are similar. However,
visual differences exist between the seismic-only reconstructed velocity model and the velocity model
produced from our joint architecture (i.e., top right corner); those can also be observed in Figure 5 for
a different sample (i.e., at different times of plume’s migration).

Figure 4: From left to right 2D cross-section slice from ground truth, gravity-only, seismic-only,
and joint models. The top row shows density models, and the bottom row shows velocity models.
Visually, the density models produced by the gravity-only and our joint architectures are similar.
However, visual differences exist between the seismic-only reconstructed velocity model and the
velocity model produced from our joint architecture (i.e., top right corner).

Figure 5: 3D view of label (left) -prediction (right) pair of velocity variation given the CO2 plume
location after 50 years of migration from injection point.

7 Discussion

Our results demonstrate the potential benefits of DL-based joint inversion. The joint inversion model
consistently outperforms DL-based gravity-only and seismic-only inversion models across various
evaluation metrics. This performance suggests that the fusion of surface gravity and seismic data can
lead to more accurate subsurface models. The improved performance of the joint inversion model
in terms of density and velocity reconstruction, segmentation accuracy, and R-squared coefficients
indicates the effectiveness of the proposed approach in capturing the complexity of subsurface CO2

plumes.
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The benefits of DL-based joint inversion are limited from a computational perspective because
combining two different datasets requires more memory and time during training. Our joint inversion
model takes roughly 45s per epoch on 4 A100 GPUs with a batch size of 8. In contrast, DL-based
gravity inversion takes roughly 20s per epoch, and DL-based seismic inversion takes roughly 30s
per epoch for the same number of GPUs and batch size. Additionally, joint inversion takes just
over 400 epochs to converge to a solution vs. 200 for both the gravity and seismic-only approaches.
The greater number of epochs is possibly explained by the more complex relationship our joint
inversion approach has to resolve vs. the single mode methods. Regarding inference, our joint model
is comparable to the gravity and seismic-only models, producing predictions in less than one second
on a single A100 GPU.

We utilize the PocketNet approach proposed by [43] in our joint architecture. This approach takes
advantage of the similarity between the U-Net architecture and geometric multigrid methods to
drastically reduce the number of parameters [43, 44]. Additionally, we replace the transposed
convolution with trilinear upsampling. With these modifications, we reduce the number of parameters
from roughly 33,000,000 to 349,000, yielding a roughly 40% decrease in the time per epoch.
Additionally, these modifications allow us to use a larger batch size (8 instead of 4).

Our loss function is a weighted (and convex) combination of several components that address different
aspects of the joint inversion problem, like regression, segmentation, and regularization. Other loss
functions for these various components may further improve our results. For example, the focal
loss for the segmentation component would be a potential candidate since it does not require the
computation of weights like the GDL [45]. As previously stated, we develop the convex combinations
of weights for the loss function via a partial grid search over the parameter space. The only weight
that can significantly affect the results is the weight of the autoencoder regularizer. The selected
weight for each autoencoder is 0.025, but we tested these for values ranging from 0 to 0.1. The
accuracy remains comparable for non-zero values, but for the value zero (i.e., no autoencoder), we
notice a sizable decrease in accuracy for our results. The other weights are relatively balanced, and
their perturbations do not significantly impact our results.

While developing our joint inversion model, we observe that the optimization landscape is difficult,
with some local minimums corresponding to good values for density model misfit and R-squared and
vice versa for velocity models. Adding a coupling term like in the classical joint inversion formulation
given by 2 may help avoid getting trapped in local minimums during training. Future work will focus
on formulating and testing a term based on the Dice score. The intuition here is to enforce via our
modified loss function that the plumes occupy the same physical space and geometry.

Our data comes from simulations of a single geologic formation (Johansen). Further work is needed
to test the generalization capability of our joint inversion model to other datasets based on simulations
of other CO2 storage sites (i.e., Snohvit and Kimberlina [46]) and on field data. However, time-lapse
CCUS monitoring with gravity (and other non-seismic methods) is a data-poor field. Sufficiently
detailed reservoir models for CCUS, especially field data, are hard to come by, and access is limited
[29, 46].

8 Conclusions

We developed an effective DL-based joint inversion method to recover high-resolution, subsurface
CO2 density and velocity models from surface gravity and seismic data. We train our joint DL
architecture on realistic, physics-simulated CO2 plumes, surface gravity, and seismic data. This
training approach mirrors real-world site data collection. Our joint inversion outperforms gravity and
seismic-only inversion techniques for our selected metrics. While there is room for improvement, the
results presented here are promising and represent, to the best of our knowledge, the first fully 3D
DL-based joint inversion of surface gravity and seismic data derived from a physics simulation of a
proposed CO2 storage site.
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