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Abstract

This paper presents a novel anomaly detection method, called AD-DMKDE, based
on the use of Kernel Density Estimation (KDE) along with density matrices (a
powerful mathematical formalism from quantum mechanics) and Fourier features.
The proposed method was systematically compared with eleven state-of-the-art
anomaly detection methods on various data sets, and AD-DMKDE shows com-
petitive performance. The method uses neural-network optimization to find the
parameters of data embedding, and the prediction phase complexity of the proposed
algorithm is constant relative to the training data size.

1 Introduction

An anomaly can be defined as an observation that deviates significantly from the patterns of the data
set from which it originates. In most cases, data are generated by complex processes that depend
on a great number of factors, so anomalies may contain valuable information about unexpected
behaviors or elements that impact the generation or measurement of the data Aggarwal [2016]. Thus,
recognizing anomalous data (which can be referred to as unusual, atypical, unexpected or malicious)
and identifying the unusual processes that originate them are the main objectives of anomaly detection
(AD) Blázquez-García et al. [2021], a field that has become quite important in recent years because
the understanding of anomalous behavior is a crucial ability when making decisions and predictions
Ruff et al. [2021]. The main mechanism used by AD algorithms is the construction of a model
that determines a degree of “normality" for the data points, and then detects anomalies as points
that deviate from this model. These algorithms are commonly used in applications like detecting
anomalous readings in scientific experiments Flach et al. [2017], sensor monitoring in industry
Denkena et al. [2020], network and information security Bouyeddou et al. [2021], among many
others.

The main idea behind the method presented in this paper, called AD-DMKDE, is the combination of
three key elements: random Fourier features Rahimi and Recht [2007] as an embedding that allows
to approximate a Gaussian kernel centered in each training sample; a density matrix, that serves as
an efficient and compact mechanism to summarize these kernels, and a density estimation process
that uses the density matrix to estimate the density of new samples, so the ones whose density lie
below a certain threshold are classified as anomalies. The method uses optimization to obtain suitable
parameters of random Fourier feature embedding (a process called “Adaptive Fourier Features"), and
is able to calculate the best threshold value using percentiles from a validation data set.
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The outline of the paper is as follows: in Section 2, we present the baseline anomaly detection
methods that were used to compare the proposed algorithm. In Section 3, we present the details
of the novel method, explaining the stages of the algorithm and how it uses Fourier features and
density matrices. In Section 4, we present the experimental setup we constructed and the results of
the comparison between the proposed algorithm and the baseline methods. In Section 5, we state the
conclusions of this work and sketch future research directions.

2 Anomaly Detection Baseline Methods

First of all, we selected five well-known methods based on classic, mathematical approaches to
anomaly detection. These methods include One Class SVM Schölkopf et al. [2001], a kernel-based
algorithm that builds a boundary that encloses normal data and leaves anomalies outside of it;
Covariance Estimator Rousseeuw and Driessen [1999], that finds the smallest ellipsoid that wraps
normal data; Isolation Forest Liu et al. [2008], that tries to separate points using decision trees, and
those who are easier to isolate are the outliers; Local Outlier Factor (LOF) Breunig et al. [2000],
based on a distance measure from each point to a set of its neighbors; and K-nearest neighbor (KNN)
Ramaswamy et al. [2000], that makes an scoring based on the distance from only the k-th nearest
neighbor.

We also included newer methods that do not use neural networks into their architectures, but instead
take other approaches. These type of methods include SOS Janssens et al. [2012], that builds an
affinity matrix between all points that acts as a similarity measure; COPOD Li et al. [2020], that builds
univariant probability functions for each dimension and then joins them in a unified multivariant
function that models the data distribution; and LODA Pevný [2016], that combines simple classifiers
in low dimensions and uses histograms to detect anomalies.

Furthermore, we consider three additional baselines algorithms that rely on the use of neural networks
as their central elements. These models include VAE-Bayes Kingma and Welling [2014], built
around a variational autoencoder that maps data to a latent space where the probability distribution
can be retrieved by using Bayesian assumptions; DSVDD Ruff et al. [2018], in where a neural
network is used to transform data points into a latent space where normal data can be encompasssed
into a hypersphere; and LAKE Lv et al. [2020], that includes a variational autoencoder to reduce
dimensionality in a way that preserves data distribution, and then performs KDE in this new space
and separates anomalies using a threshold.

3 Anomaly Detection through Density Matrices and Kernel Density
Estimation (AD-DMKDE)

Figure 1: AD-DMKDE method architecture. The parameters of the embedding do not change after
they are calculated.
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González et al. Gallego and González [2022], González et al. [2022] proposed an algorithm intended
for density estimation called “Density matrix for Kernel Density Estimation" (DMKDE), based on
the usage of density matrices as an efficient way to approximate kernel density estimation. This
algorithm is used as the foundation from which AD-DMKDE, the novel method presented here, is
built. Figure 1 shows a summary of the method.

AD-DMKDE splits the dataset in three subsets: training set, validation set and test set. When training,
each data point in the training data set is implicitly transformed into a higher dimension by applying
the function rff(xi) =

√
2 cos(wTxi + b) where w and b are vectors made of random samples.

This mapping is able to approximate a Gaussian kernel, as stated in Rahimi and Recht [2007]. Also,
AD-DMKDE enhances it through the use of optimization, that allows to find better values for the
parameters of the mapping function. This process is called Adaptive Fourier features (AFF). After
the application of the RFF formula with the optimized values of w and b, the obtained results are
normalized to obtain the final embedding ϕaff(xi) that will be the representation of each xi.

The density matrix is built from the mappings of the training samples by using the formula

R =
1

n

n∑
i=1

[
ϕaff(xi)

]T
ϕaff(xi)

Although R contains all the information of the embedded train samples, its size does not depend on
the number of training samples n; instead, it only depends on the size of the embedding. This is a
major improvement over memory-based methods, such as KDE, that require the use of the entire
training set to make a new prediction and thus can become prohibitive on large data sets.

With R we estimate the density for samples in validation and test sets. Given a validation sample xj,
we need to transform it by using the exact same mapping and normalization we previously defined in
order to obtain ϕaff(xj), and then calculate f̂(xj) = [ϕaff(xj)]

T R [ϕaff(xj)] as an estimate of the

density of xj. This process is repeated in order to build the validation density set F̂val, that contains
the estimates of every validation sample.

F̂val is required to obtain a threshold θ to discriminate samples as anomalies. We use the anomaly
rate of the data set (either an a priori known value or the proportion of anomalies we expect to find),
and calculate the percentile that corresponds to this anomaly rate: θ := q(anomaly rate %)(F̂val).
Finally, we estimate the density of the test samples (by mapping them and applying density estimation
using R, similarly to the validation samples), and then use the threshold θ to discriminate. A test
sample xk is labeled as ‘anomaly’ if f̂(xk) ≤ θ, and as ‘normal’ otherwise.

4 Experimental Evaluation

For our experiments, we compared AD-DMKDE with all the baseline algorithms listed above. To run
OneClassSVM, IsolationForest, Covariance and LOF, we used the Python implementation provided
by Scikit-Learn library. KNN, the shallow methods, VAE-Bayes and DVSDD were run through the
implementation provided by the PyOD Python library Zhao et al. [2019]. For the LAKE algorithm
Lv et al. [2020], the implementation we used came from the Github repository of its authors.

The experimental setup applied over each algorithm (and the proposed method) consisted of eighteen
public data sets, chosen due of their variety of characteristics, such as their size, dimensionality and
anomaly rate, in order to test the performance of the algorithms in multiple scenarios. The source for
all the selected data sets was the ODDS Library of Stony Brook University Rayana [2016]. Each data
set was split in a stratified way (keeping the same proportion of outliers in each subset) by randomly
taking 30% of the samples as the test set, and from the remaining samples, again randomly taking
30% for validation and the remaining 70% as the training set. The anomalies in training set were
ignored, using only normal samples in the AD-DMKDE process. The splitting was performed only
once per data set, so that all algorithms worked with exactly the same data partitions.

When implementing the Scikit-Learn and PyOD algorithms, the default configurations defined in
these libraries were used, modifying only a few parameters whose final values were decided through
a parameter grid search. Also, the LAKE algorithm required some corrections to the original code
published by its authors; however, the basic internal structure, the internal logic of the algorithm and
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Data Set OCSVM iForest Cov. LOF KNN SOS COPOD LODA VAE-B DSVDD LAKE AD-DMKDE
Arrhythmia 0.813 0.821 0.818 0.804 0.861 0.773 0.844 0.798 0.856 0.864 0.909 0.911
Cardio 0.804 0.752 0.756 0.702 0.753 0.739 0.750 0.717 0.783 0.735 0.772 0.831
Glass 0.916 0.931 0.931 0.925 0.900 0.907 0.916 0.848 0.900 0.907 1.000 0.974
Ionosphere 0.765 0.710 0.876 0.830 0.817 0.784 0.736 0.510 0.714 0.674 0.993 0.959
Letter 0.893 0.897 0.909 0.930 0.910 0.911 0.895 0.899 0.897 0.897 0.838 0.927
Lympho 0.934 1.000 0.934 1.000 1.000 0.934 0.962 0.923 1.000 1.000 1.000 1.000
MNIST 0.881 0.881 0.841 0.886 0.909 0.864 0.868 0.866 0.895 0.880 0.959 0.911
Musk 0.958 0.931 0.997 0.958 0.991 0.951 0.964 0.954 0.984 0.992 0.996 1.000
OptDigits 0.952 0.952 0.952 0.949 0.952 0.953 0.949 0.955 0.951 0.952 0.976 0.981
PenDigits 0.963 0.967 0.966 0.961 0.965 0.963 0.966 0.966 0.966 0.963 0.994 0.994
Pima 0.592 0.624 0.559 0.615 0.644 0.636 0.615 0.597 0.632 0.679 0.740 0.758
Satellite 0.681 0.757 0.813 0.634 0.716 0.597 0.732 0.709 0.761 0.761 0.841 0.845
SatImage 0.984 0.998 0.991 0.979 0.998 0.980 0.994 0.997 0.996 0.996 0.946 1.000
SpamBase 0.702 0.794 0.714 0.702 0.719 0.719 0.799 0.699 0.741 0.738 0.850 0.816
Thyroid 0.953 0.958 0.986 0.949 0.953 0.949 0.953 0.958 0.958 0.961 0.803 0.967
Vertebral 0.750 0.778 0.817 0.796 0.810 0.817 0.817 0.817 0.817 0.819 0.807 0.904
Vowels 0.950 0.942 0.941 0.951 0.969 0.954 0.943 0.929 0.952 0.943 1.000 0.979
WBC 0.942 0.941 0.949 0.957 0.942 0.913 0.970 0.947 0.957 0.956 0.953 0.961

Table 1: F1 Score for all classifiers over all data sets. The first and second best values are marked in
bold and underlined, respectively.

the functions on which it is based remained the same as in its original configuration. The main metric
we chose to determine the performance of the algorithms was the F1 score (with weighted average), a
very common metric used when testing machine learning algorithms.

The results for all data sets and all algorithms (baseline methods and our proposed method) are
shown in Table 1. The best value for each data set is highlighted in bold, and the second best value is
underlined. A notable difference appears between most of the baseline methods and our proposed
method, with LAKE being a notable exception; however, AD-DMKDE shows the best or second best
performance in all the considered data sets, followed by LAKE and LOF methods.

To determine if the differences between all the methods are statistically significant, we performed
the Friedman test, a well-known statistical method to compare different populations or groups. The
test generates an specific p-value that acts a a measure of the total differentiation among the groups,
so if this value is lower than a given confidence α (in our case, α = 0.05), we can assure that there
is statistically significant evidence supporting that the methods are different. When applying this
test to the results in Table 1, we obtain a p-value of 1, 031× 10−13, so it strongly assures that there
is a difference between the performance of the methods. After that, we compared the algorithms
two by two, using the Friedman-Nemenyi test, a variation of the former that informs us if there
is a significant difference for every pair of methods. The result of this second test indicates that
AD-DMKDE stands out, being different with respect to all other methods, with the sole exception
of LAKE. Besides, LAKE differs only with other five methods, and the other methods do not differ
significantly between them. In summary, AD-DMKDE is a method that can perform over the average
state-of-the-art anomaly detection methods, standing out when affording data sets with various values
in its number of dimensions, number of samples and outlier rates.

5 Conclusion

In this paper, we presented a novel method for anomaly detection using density matrices in combina-
tion with Kernel Density Estimation and random Fourier features. The new method AD-DMKDE
was systematically compared against eleven different anomaly detection algorithms using F1 Score as
main metric, and it showed better than state-of-the-art performance over eighteen anomaly detection
data sets, being notably superior than classic algorithms and comparable to deep learning-based
methods. AD-DMKDE does not have large memory requirements because the method builds a
single density matrix throughout the training phase whose size is defined only by the embedding,
allowing the summarizing of large data sets in relatively small matrices, showing an advantage in
computational complexity with respect to KDE. In addition, the method allows for easy interpretation
of the results, because each data point labeled as “anomaly" can be understood as a sample lying in
low density regions with respect to normal data. As future work, we will continue to further develop
the main concepts of AD-DMKDE, building new algorithms based on the coupling of the method
with deeper neural networks, such as autoencoders, whose strengths can contribute to improve the
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AD-DMKDE method to allow it to handle more complex data sets like image data sets or time series
data sets.
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