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Abstract

The prediction of Electronic Stopping Power for general ions and targets is a
problem that lacks a closed-form solution. While full approximate solutions
from first principles exist for certain cases, the most general model in use is
a pseudo-empirical model. This paper presents our advances towards creating
predictive models that leverage state-of-the-art Machine Learning techniques. A
key component of our approach is the training data selection. We show results that
outperform or are on par with the current best pseudo-empirical Stopping Power
model as quantified by the Mean Absolute Percentage Error metric.

1 Introduction

Following the latest advances in Machine Learning (ML) models in the field of Physics [1, 2], we
seek to leverage these tools to predict the Electronic Stopping Power curve for different ion-target
systems. The Stopping Power (SP) can be defined as the energy lost by an ion per unit path length
when being launched into a target. The data is collected and measured as a function of the incident
energy of the ion, and typically follows a bell curve. Calculating the Electronic Stopping Power
involves determining the target system probabilities of occupying any electronic state different from
the initial one due to the transfer of energy from the ion to the target’s electrons [3, 4, 5]. The
problem of Electronic Power is interesting because it does not have a closed-form solution and it has
a plethora of applications including semi-conductor doping, radioactive shielding in nuclear reactors
and medicinal radiotherapy [6].

The International Atomic Energy Agency (IAEA) stopping power database [7] is the most comprehen-
sive collection of results from Electronic Stopping Power experiments and is available to the general
public. It is comprised of almost 100 years of scientific works. Even though there have been studies
in the past applying ML to the IAEA database [8, 9], they have not shown a comparison against
the current best pseudo-empirical model SRIM [10, 11] in unseen data, nor have they provided a
systematic way to clean the database, nor have they made their models public, to the best of our
knowledge. In [12] and in this work we fill those gaps.

A first step in preparing data collected with a diverse number of experimental apparatus and techniques
that have evolved through time is data cleaning and selection. For that we have developed a novel
heuristic algorithm that leverages the unsupervised clustering algorithm DBSCAN [13, 14] shown in
Section 2.2. We then present our advances towards the prediction of SP. In Section 3, we characterize
the best model for the special case of single atom single element target (mono-elemental target).
Finally, in Section 4, we show promising results for predicting SP for general targets as can be
assessed by their performance against the current best pseudo-empirical model SRIM.
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2 Data pre-processing

2.1 Database description

The IAEA database (in its December 2021 version) consists of 60173 experimental measurements,
representing stopping power values for 1491 ion–target combinations of 49 projectiles colliding with
283 targets, across the energy range 10−4 to 104 MeV/amu, and ion and target atomic masses from 1
to 240 atomic mass units (amu). Concerning only the mono-elemental targets, there are 706 collision
cases composed of 44 different projectiles and 73 targets, resulting in 36544 experimental data points.
The experimental data summarizes 1190 publications covering the period 1928–2021.

2.2 DBSCAN data cleaning heuristic

A typical Raw SP curve is shown in the left panel of Figure 1, where you can appreciate that different
publications have reported different but intersecting curves. To clean the database, and thus render
it suitable for training, we must separate different clusters of measured curves for each ion-target
system and exclude data from suspect noisy publications. For this, we implement a heuristic that
utilizes DBSCAN, as it is a particularly apt tool for finding non-globular clusters.
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Figure 1: Left: Experimental results for stopping power cross-sections, for H projectiles in Zn target.
The colors indicate the year of publication of the data. Center: Data filtered by our heuristic. Right:
Predicted data from the Neural Network for mono-elemental targets.

The leaning heuristic is described in algorithm 1. All the data df for a certain ion-target pair is
selected. After that, it is sorted and scaled. A threshold th that depends only on the number of
publications N is calculated using a negative sigmoid (so as to be lenient with systems with a small
number of related publications). Then DBSCAN is run to obtain the cluster names cn. Finally, we
iterate over each of the different publications pub and check if the conditions for removal are met. We
remove preferentially old publications that have an overlap of more than 0.6 of the energy range with
future publications, and that either are mostly composed of DBSCAN outliers (OutlierFraction) or
that make up the majority of a cluster (ClusterFraction). The latter indicates they are separated
from the rest of the data.

We show a typical result of our cleaning procedure in the central panel of Figure 1. Our heuristic
selects data-points which appear to lay in only one bell curve.

3 Mono-elemental target model

3.1 Model definition and training

Mono-elemental targets are compounds made up of a single element species, they comprise 60% of
the measurements in the IAEA database. As has been done by Guo et al. [8], we employ a Fully
Connected Network. To improve on their model we fine-tune the parameters of the neural network
and select features, we use a 5-fold Cross Validation scheme.
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Algorithm 1: Heuristic for DBSCAN filtering
Data: df ,N
Result: RemovalList
SortByY ear(df);
ReScale(df);
th← GetThreshold(N);
cn← DBSCAN(df);
for pub ∈ df do

if EnergyOverlapWithNewPub(pub, df) > 0.6 then
if OutlierFraction(pub, cn) > th then

RemovalList← pub;
else

if ClusterFraction(pub, cn) > th then
RemovalList← pub;

end
end

end
end

Out of all the features tried in Table 1, the ones we finally select are: mass of the ion and target,
atomic number of ion and target, the energy of the ion, and the first ionization of the target. All the
selected features can be easily found in pre-calculated tables. The network structure is made up of
fully connected layers in the following order 10× 24× 32× 24× 10× 10 with leaky-relu activations
except for the last one. Each layer has dropout parameters 0.2× 0.5× 0.5× 0.5× 0.2× 0.

Each instance of Cross Validation (CV) is trained for 300 epochs with 15 epochs early stopping
using stochastic gradient descent with the Adam [15] optimizer and a batch size of 64, a learning
rate of 1e− 3 and a weight decay of 1e− 10. A full CV round takes 3 hours on a 1080Ti GPU. The
loss function used was a linear combinations of the MAPE and the MSE (Mean Squared Error) for
increased stability, where the MAPE is defined as

MAPE ≡ 100

n

∑ ∣∣∣∣ytrue − ypred
ytrue

∣∣∣∣ .
To make the model perform correctly and stabilize the training, we have to take extra considerations.
We apply weight normalization re-parametrization [16] in each layer for better stability and con-
vergence. To improve the behavior of the model around the tails of the stopping power curve i.e.,
extreme energy values that should be both close to zero, we have tried adding very high and low
energy points with a SP value close to 0 for each system, but this made the MAPE training extremely
unstable. The desired effect is accomplished in the final model by removing the bias parameters from
the first linear layer.

Table 1: MAPE values on cross validation for different input features.

Features MAPE (%)
Default: Zp, mp, Zt, mt, E 5.76

E −→ logE 5.47
+ first ionization (target) 5.07

+ first + second ionization (target) 14.9
+ first ionization (target) + first ionization (projectile) 16.1

+ first ionization and electronegativity (target) 5.11
+ first ionization (target) + electronegativity (projectile) 23.8

3.2 Results

To benchmark our algorithm, we apply the whole cleaning and CV pipeline on a data-set with
publications up to 2013 and we keep data from 2014 onward as a holdout test set. This guarantees that
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we can check our results on an equal footing with the SRIM model released in 2013. The resulting
score obtained by our model is a MAPE of 7.0% while SRIM shows a value of 11.1%. We provide
our best inference model trained on all the data up to 2021 in https://github.com/ale-mendez/
ESPNN.

4 Multi-atomic target models

4.1 Model definition and training

In order to predict Stopping Power for molecular compounds the three-dimensional molecule structure
must be taken into account. A very fruitful type of model for predicting molecular features from
structure has been the Message Passing Neural Network (MPNN) [17]. One of the most successful
such models has been SchNet [18], which has been trained for: predicting Magnetic Moment, Energy
Formation of solids and many more targets. In these models, each atom of the molecule is represented
with a separate embedding vector. As each vector goes through the network it is updated by the
interactions with its close neighbors, and afterwards they get an atom-wise update. This implies that,
in the last layers, the embeddings hold information for both the particular atom and its environment.
This means the last layer can be used as molecule encoding.

As the IAEA data-set number of different targets is notably smaller than the number of targets present
in QM9 and MatProj, our approach is to use the last hidden layer of pre-trained SchNet models as a
feature encoding of our molecules. These encodings in turn are fed into a Fully Connected head, and
in the end the value is averaged over all the atoms from the same molecule. In a future work we will
also try to fine-tune the full SchNet network.

There are two main data sets in which SchNet models have been trained: QM9 [19, 20] and Materials
Project (MP) [21]. In the case of the QM9 model the weights are readily available in the SchNet
repository, while the MP‘s model has to be trained by downloading the data-set (distributed under the
license Creative Commons Attribution 4.0 License) following the recipe by Schütt et al. [18]. While
QM9 includes targets that amount to 5300 data-points of the IAEA Dataset, MP includes many more
targets, thus making molecular structure data available to 45000 Stopping Power data-points.

For training we repeat the schema presented in the last section. In this case each mini-
batch has three dimensions, instead of two, and the following shape (BatchSize, NumAtoms,
SizeAtomEmbedding + SizeAtomicFeatures + SizeIonFeatures ), where NumAtoms is
the number of atoms of the molecule (depending on the batch some molecules are padded to keep this
size homogeneous along the batch) SizeAtomEmbedding represents the embedding size extracted
form a given SchNet model and layer, SizeAtomicFeatures represents the features particular to
the atom of the target molecule and, SizeIonFeatures represents the features related to the ion.
The network structure mostly follows the one that has been presented in the Subsection 3.1 but with
different layer sizes, which we are still fine-tuning.

4.2 Results

Our current best Materials Project model cleaned, trained and validated on data from before 2013
has a resulting score on the uncleaned test after 2013 of 15%, and in the same data set SRIM obtains
17%. QM9 does not have any molecular target that has been published in a Stopping Power study
after 2013. To assess the respective model against SRIM we use the predictions of the 5-fold CV on
the train set. Our current best QM9 model has a MAPE of 15% on validation which is better than the
value achieved by SRIM in the same data-set 30%.

5 Conclusion

We have developed an automatic way of cleaning the data leveraging DBSCAN. We have shown
that our model for single atom targets outperforms the state-of-the-art pseudo-empirical model. And
finally, we have shown promising results in models that can cover the general case of a molecular
target. We expect to run more tests on the Materials Project SchNet-based model and to also make it
available to the general public. Important additions to future iterations of the model will be including
the phase of the target in the model and dealing with polymeric targets.
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