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Abstract

Privacy-preserving machine learning in data-sharing processes is an ever-critical
task that enables collaborative training of Machine Learning (ML) models without
the need to share the original data sources. It is especially relevant when an
organization must assure that sensitive data remains private throughout the whole
ML pipeline, i.e., training and inference phases. This paper presents an innovative
framework that uses Representation Learning via autoencoders to generate privacy-
preserving embedded data. Thus, organizations can share the data representation to
increase machine learning models’ performance in scenarios with more than one
data source for a shared predictive downstream task.

1 Introduction

Artificial Intelligence collaboration, as data sharing strategies, are standard practices that organizations
are starting to use with each other to improve prediction model performance, increase the reliability
of data, and, thus, acquire competitive data-based advantages (1) . Yet, in some use cases of real life,
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the data sharing process might not be possible because of privacy policies or intellectual property
laws, even if the communication infrastructure between peers is safe (2). Imagine for instance, two
companies where each of them has a particular set of variables for the same group of users. In
this scenario, both peers could take advantage of the complementary information available in the
other company to predict a response variable (model output) and use it in decision-making processes.
However, given that there is sensitive data from users on both ends, the data sharing process is
canceled, and so is the possibility of increasing the model performance. In this case, developing
a strategy that allows them to share their information without losing the predictive power over the
downstream variable would be appropriate for both organizations’ ML model development.

In that regard, academia and private organizations have developed multiple solutions and frameworks
enabling data sharing based on technology and machine learning approaches. Most of these ap-
proaches are based on cryptography (e.g., homomorphic encryption (3; 4)), raw data perturbation (e.g.,
differential privacy (5), local differential privacy (6), dimensionality reduction(7)), and distributed
architecture (e.g., federated learning) (8; 9). Notice that these solutions only preserve privacy in
communication, change individual observation patterns, and present high maintenance requirements.
Having said that, we are interested in building a privacy-preserving framework using recent deep
learning modeling that will allow collaborative peers to share their data without losing the predictive
power of the original features.

This paper presents an innovative framework using representation learning via auto-encoders to
create privacy-preserving embeddings of sensitive information and allow multiple data sources to
collaborate in trustful machine learning model development. Additionally, we applied the proposed
framework to three scenarios to conclude the applicability. The work can be summarized as follows:
First, we overview available case studies on privacy-preserving machine learning to understand their
limitations and the room for improvement. Then we go deep into the proposed method and stages of
the general process to test the methodology. Subsequently, we introduce and develop the selected
case studies and present their results. Finally, we conclude and present insights for future work.

2 Background

Since our proposed method proposes a novel methodology for privacy-preserving machine learning
for collaborative model development using deep-learning autoencoders, we will understand traditional
privacy-preserving approaches and representation learning to conclude about their possible integration
as a solution to the problem we are addressing

2.1 Privacy-preserving Machine Learning

Privacy-preserving machine learning is an application field in the AI ecosystem which intends to
close the gap between data ownership rights and the benefits of applying machine learning models
with this data. Specifically, these models can protect the data or the developed model (10). Since
we propose a strategy to allow peers to share data safely, we will go deep into data-oriented privacy
guarantee applications.

There are three main traditional approaches to solve the problem of privacy preserving ML. First,
Encryption-Based Privacy-Preserving, which prevents data leakage between peers by transforming
the feature set into a ciphertext, that can be analyzed as the original data (11). Despite the security
benefits of using these frameworks, such as Homomorphic Encryption, these solutions are limited
when implementing the methodology in real-life scenarios because of technology requirements. On
the other hand, we have architecture-based approaches, such as Federated Learning, which create
a decentralized model development pipeline with data residing in multiple peers as mobile devices
(12). This solution is a practical approach when many contributors share the same information, but
cannot be used when different peers share different information, which does not solve the problem
we are addressing.

The third traditional approach to data-oriented privacy preservation is a perturbation of the original
features. In particular, differential privacy is a commonly used strategy that takes advantage of the
data distribution to mask individual observation values (13); however, it might add significant noise
to the original data, decreasing the data utility. Finally, applying dimensionality reduction to the
original data can preserve the variance of each observation while obfuscating the original features.
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One way to apply this strategy is Principal Component Analysis, which creates a representation vector
of the data. These new features can be used on the downstream model of interest. However, linear
transformation for dimensionality reduction might lose other data relationships. Nguyen et.al. (9),
in their work AutoGAN-based Dimension Reduction for Privacy Preservation, used representation
learning to preserve the privacy of images and include their embedding on anomaly detection.

2.2 Representation Learning

On the other hand, Representation Learning is a study field of Deep Learning that allows algorithms to
learn representations of input data automatically. These techniques are widely used in alternative data
such as images, speech, or text, and their applications include anomaly detection, pattern recognition,
and dimensionality reduction. Autoencoders are neural networks specifically trained to encode input
data and use this embedding to reconstruct the original data set with a minimum error(14)]. These
neural networks are built with two structures: an encoder and a decoder. They are connected through
the latent space representation of the data, which is the embedded vector of the original data (15).
Additionally, representation Learning is widely used as a principal dimensionality reduction strategy
since it structures a supervised machine learning model that seeks to find the best nonlinear features
combination that represents the original data (16). In this way, the latent space representation will
be an abstract multi-dimensional space that encodes the original feature set but holds the proximity
between observations that look alike.

Notice that privacy-preserving and representation learning are complementary research areas since
the second one offers a deep learning strategy to encode data while keeping its core information
and observation representation. In this way, this combination allows us to solve our main objective:
achieve trustful data sharing between collaborative peers for machine learning model development.

3 Privacy-Preserving Machine Learning for Collaborative Data Sharing via
Auto-encoder Latent Space Embeddings

We propose a method that seeks multiple peers could use representation learning to embed their data
as a privacy-preserving strategy and share it among them without losing predictive power. Proving
that this strategy works to share data trustfully and keeps the predictive model’s performance will add
another possibility for organizations to have AI collaboration practices. Our framework displayed
in Fig. 1, considers multiple data sources willing to contribute to each other by sharing the data but
must respect the privacy of sensitive data. Notice that they collaborate on complementing the feature
set of an observation identified by a standard ID.

In traditional data-sharing pipelines to train collaborative machine learning models, both ends
contribute by sharing a raw dataset that will be merged with a standard ID in all observations. After
the appropriate data preprocessing, one peer (or both of them) can train a machine-learning model
with a more extensive feature set that can improve the predictive power over the objective variable.
Unlike this approach, we propose to include an additional step previous to the data merging, in
which peers will obtain a latent space representation of the original data, in other words: getting an
obfuscated dataset ready to be shared. In this way, peers will join each data representation to train a
shared supervised downstream task to predict the same objective variable without losing predictive
power and intent to improve the overall performance by sharing their data.

For the initial scope of this method, we limit the number of peers to two, but this strategy could scale
to more than this quantity. Additionally, we assume that the involved peers will share a representation
of the whole feature set. However, for applications in real-life scenarios, there may be no need for
both to apply privacy-preserving strategies.

4 Evaluation

4.1 Data Sets

To test the proposed framework as well as define scenarios likely to occur in real-life use cases, we
selected three public data sources: House Pricing (17), Mnist Numbers (18), and Buzz in Social
Media (19). We choose these data sets to test the performance of our framework under different
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Figure 1: Privacy-Preserving Machine Learning Framework: the two peers share the respective latent
representation of the corresponding database to a common data source that is then used to train the
Machine Learning model in the training phase

.

characteristics and ensure we include possible scenarios, thus, being able to have a generalized
framework. This way, we guarantee that we have both prediction tasks, regression, and classification.
Additionally, we considered the variations in the available features by dimension and type. In other
words, we seek to include different downstream tasks, dimensionality, and feature types to test the
robustness and scalability of the solution.

Data set Num. Observations Num. Features Prediction Downstream Task

House Pricing (17) 21613 12 Regression
Mnist Numbers (18) 35000 784 Multi Class Classification
Buzz in Social Media (19) 87488 77 Regression

Table 1: This table shows the widely-known benchmark data sets that we used to test our privacy-
preserving framework. The number of total samples, number of features, and Machine Learning tasks
performed over each dataset validates are correspondingly reported.

4.2 Experiments

We set up a baseline model without the privacy-preserving strategy and four privacy-preserving
scenarios to guarantee reliable and comparable results based on the proposed method in Section 3.

Scenario 0 | Baseline Trains a predictive model for the downstream task using a single data source,
which is considered as the raw dataset in this work. In this scenario, we train a traditional supervised
machine learning model and include randomized search as a hyperparameter tunning strategy. The
performance of this baseline model will be the performance that we seek to maintain in the following
scenarios.

Scenario 1 | Representation Learning with a single shared autoencoder In this case, we preprocess
a unique dataset to obtain a single representation vector and use it to train a predictive model for the
downstream task. Thus, evaluate the predictive performance of an accurate representation.

Scenario 2 | Representation Learning with individual autoencoders Simulate two peers by
splitting the initial data set and preprocessing them individually to obtain a representation vector for
each source. To train the predictive model for the downstream task, we join those vectors using the
observations’ ids.

The following diagram presents the pipeline of the data preprocess and sharing between both peers 2
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Figure 2: General Autoencoder structure for the training phase and respective scenarios explored
in this work, namely (1) Scenario 0: Baseline, Representation Learning with (2) Scenario 1: single
shared autoencoder, and (3) Scenario 2: individual autoencoders per each peer.

We design the following two scenarios taking into account the hypothesis that the autoencoder
could follow a non-naive approach when estimating the latent space representation and improve the
downstream task metrics.

Scenario 3 | Representation Learning with shared autoencoder non-naive approach We test the
impact on the downstream task if the autoencoder model considers the predictive variable on the
principal model. In this scenario, we adjust the autoencoder and transform it into a multitask neural
network that, on one side, predicts the representation performance and, on the other, predicts the
objective variable. Taking into account that both peers have access to the predictive variable, we
replicate the second scenario but update the encoder stage of the process as mentioned above

Scenario 4 | Representation Learning with individual autoencoder non-naive approach We test
the impact on the downstream task if the autoencoder model considers the predictive variable on the
principal model. In this scenario, we adjust the autoencoder and transform it into a multitask neural
network that, on one side, predicts the representation performance and, on the other, predicts the
objective variable. Taking into account that both peers have access to the predictive variable, we
replicate the second scenario but update the encoder stage of the process as mentioned above

4.3 Experimental Setup

Autoencoder Setup. We use the Tensorflow framework to structure the Autoencoder Neural Network.
Additionally, we defined one fixed structure for all experiments to be able to conclude over the general
framework and not about the complexity of the network. In this case, the Autoencoder model presents
two main components: encoder and decoder, each has four layers, and the connection between both
is the latent space representation layer. Fig. 3 illustrates the general Autoencoder structure, where N
represents the original feature size and M represents the embedding size.

Encoder: The encoder presents four layers. First is the input layer, which will have as many neurons
as the original data frame features (N). Then the following three hidden layers will perform nonlinear
transformation with dimensionality decrease between each other, reaching the final layer, which is
the latent space representation and final layer. We select the dimensions N (for the input layer), [128,
64, 40] for the hidden layers, and M for the latent space representation size.

Decoder: Since the decoder is a mirror representation of the encoder, it will begin its structure from
the latent space representation size (M). The following three layers will replicate the design of the
encoder inversely to reach the final layer that will correspond to the original feature size (N). We
select the dimensions M, [128, 64, 40] for the hidden layers and N for the final output size.
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Figure 3: General Autoencoder Structure

In additional considerations: Because of the type of input data that our framework use, we used ReLU
as an activation function for every layer. Additionally, because of this same argument, and taking into
account that we scale the input data, the loss function of the Autoencoder is Mean Absolute Error.
Finally, we selected an Adam Optimizer with a learning rate = 0.0001.

4.4 Technical Setup

The following table presents the hardware specifications for training and testing the framework for all
scenarios.

Parameter Technical Specs

CPU Model Intel(R) Xeon(R)
CPU Freq. 2.30 GHz
No. CPU Cores 2
GPU Nvidia K80 / T4
GPU Memory 12 GB
No. CPU Cores 2
Available RAM 12 GB

Table 2: This table lists the resources and their specifications used to test the proposed framework

5 Results

5.1 Encoding performance

Shared autoencoder

We trained the autoencoder model with the complete datasets to test some previously mentioned
scenarios. We tested the representation accuracy with the loss function of the autoencoder model
and complementary metric of average correctly estimated observations per feature, which is defined
as an observation with less than 5% MAPE. For House Pricing, the representation error is 5%, and
the average estimated observations per feature rate are 98%. For Minst, the representation error is
7%, and the average estimated observations per feature rate are 96%. For Buzz in Social Media, the
representation error is 6%, and the average estimated observations per feature rate are 97%.

Individual autoencoders

We trained one autoencoder model for each simulated data source to test some previously mentioned
scenarios. As in the shared autoencoder, we tested the representation accuracy with the loss function
of the autoencoder model and complementary metric of average correctly estimated observations
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per feature. For House Pricing, the average representation error is 11%, and the average estimated
observations per feature rate are 86%. For Mnist, the average representation error is 9%, and the
average estimated observations per feature rate are 94%. For Buzz in Social Media, the representation
error is 8%, and the average estimated observations per feature rate are 94%.

5.2 Representation Learning - Framework

House Pricing

The downstream task for this experiment is to estimate the price in USD of a house, given some
characteristics. We select an XGBoost Regressor model to predict the downstream task; additionally,
we include hyperparameter tunning with Randomized Search Cross Validation, with this set of
parameters: learning rate, max depth, min child weight, gamma, colsample bytree.

Table 3: House Pricing Scenarios Metrics

Metrics Scenario
0

Scenario
1

Scenario
2

Scenario
3

Scenario
4

R2 90.26% 84.26% 89.30% 89.79% 88.78%
Train MAPE 15.31% 18.03% 16.03% 15.69% 17.74%

R2 90.32% 84.41% 89.30% 88.93% 87.26%
Validation MAPE 14.88% 17.91% 15.89% 15.39% 16.89%

R2 90.29% 84.27% 89.33% 89.21% 87.36%
Test MAPE 15.09% 17.97% 15.96% 15.27% 17.58%

The results conclude that even with dimensionality augmentation (because of the limited number of
features of this dataset), the latent space representation presents a low loss on the predictive power
and that the downstream model can still predict the objective variable correctly. When the principal
dataset simulates two data sources, the performance with both latent space representations reaches a
high-level performance comparable to scenario one results.

Mnist Numbers

The downstream task for this experiment is to predict which number between 0 and 9 correspond to
an image. We select a Multinomial Logistic Regression model to predict the downstream task. For
this particular case, we transform the images so they can be used as tabular data

Table 4: Mnist Scenarios Metrics

Metrics Scenario
0

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Accuracy 94% 88% 84% 92% 85%
Train Precision 94% 88% 84% 92% 85%

Recall 94% 88% 84% 92% 85%

Accuracy 92% 88% 84% 91% 84%
Validation Precision 92% 88% 84% 91% 84%

Recall 92% 88% 84% 91% 84%

Accuracy 92% 88% 84% 91% 84%
Test Precision 92% 88% 84% 91% 84%

Recall 92% 88% 84% 91% 84%

The results conclude that even with dimensionality reduction, the latent space representation presents
a low loss on the predictive power and that the downstream model can still predict the objective
variable correctly. These results were expected taking into account the data’s quality, their size and
sparsity allows stable behavior.

Buzz in social media
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The downstream task for this experiment is to predict the buzz for a tweet given some characteristics.
We select an XGBoost Regressor model to predict the downstream task; additionally, we include
hyperparameter tunning with Randomized Search Cross Validation, with this set of parameters:
learning rate, max depth, min child weight, gamma, colsample bytree.

Table 5: Buzz in social media Scenarios Metrics

Metrics Scenario
0

Scenario
1

Scenario
2

Scenario
3

Scenario
4

R2 96.17% 91.13% 89.28% 94.21% 89.01%
Train MAPE 22.25% 28.46% 32.18% 25.38% 30.27%

R2 96.14% 91.08% 89.68% 93.87% 88.47%
Validation MAPE 24.76% 28.51% 33.42% 26.19% 31.06%

R2 96.19% 91.55% 89.01% 94.03% 87.90%
Test MAPE 23.87% 28.94% 33.23% 25.94% 31.89%

The results conclude that, as in the Mnist case study, even with dimensionality reduction, the latent
space representation presents a low loss on the predictive power and that the downstream model can
still predict the objective variable correctly. Unlike the House Prices performance, this data frame
presents a more significant difference from scenario 0, which is a consequence of the number of
variables included.

6 Conclusions & Future Work

In this paper, we propose an alternate solution to traditional privacy-preserving approaches in machine
learning and proof that with an accurate representation learning model, peers can share an embedded
dataset that follows the observations’ patterns and behavior. Changing the original features to a latent
space representation does not drastically deteriorate the performance of the downstream task. In our
use cases, the model results decreased for less than 10pp with a representation error between 5% and
11%. Therefore, peers or organizations can collaborate without risking the organization’s privacy
policies or violating potential clients’ privacy concerns.

For future considerations, each data source should develop a custom autoencoder neural network
implementation to improve the representation performance and guarantee that it fulfills the dataset
requirements. In addition, even if we assume that dimensionality reduction keeps data privacy, we
will develop measurements to quantify the privacy level for each dataset. This measure should take
into account the complexity of the embedding and the difficulty for attackers to decode the original
dataset. Finally, we will test this framework with organizational data from different sources and
conclude over a real-life scenario.
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