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Abstract

Understanding and measuring the effect of human mobility on the spread of epi-
demics is key to addressing these threats. GPS human mobility data represents
an enormous advancement in the field of epidemics as it could reveal population-
level contact patterns that can replace homogeneous mixing assumptions or the
unjustified use of synthetic random networks in epidemic models. However, a
standing challenge in the estimation of contacts from GPS signals is addressing the
high sparsity in this type of data. Alas, most users are observed only for a small
fraction of the time. In this paper, we address this issues by proposing a novel
methodology that can fill in the gaps in the data. Our framework is based on link
prediction using deep learning to predict missing links in a temporal bipartite graph
connecting users and locations. We demonstrate and validate our methodology on
privacy-enhanced location data from thousands of mobile devices in the city of
Philadelphia during 2020.

1 Introduction

In the past two years, large-scale and highly granular human mobility data [1] have revolutionized
networked models of epidemics, enabling them to capture dynamic patterns of human interaction and
has been influential in research and policy design alike [CITATIONS]. Yet, mathematical modeling
of epidemics integrating this class of data still faces important challenges that limit their usefulness
in practice. One of these challenges is the construction of epidemic networks that capture the contact
patterns of individuals at the population level.

Research before the COVID-19 pandemic mostly inferred human contact patterns from datasets with
coarser resolution (e.g. airline flight seat data or survey commuting data) by making the assumption
that individuals come in contact randomly and homogeneously in large subpopulations (e.g. countries
or areas serviced by airports) and move randomly between them. In contrast, epidemic models in the
literature after the COVID-19 outbreak used GPS human mobility data that is granular enough to
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Figure 1: Standing challenges associated with the construction of contact networks from GPS data.
In this work we address the issue of gaps of inactivity in user data to construct a bipartite network
connecting users and locations for all hours of the week (highlighted in red).

allow estimates of contact at the hourly level with high spatial accuracy—dispensing with assumptions
of homogeneity. While human contact can be inferred purely from spatial and temporal proximity
[2]; a more common approach is to assume that contact between two individuals only occurs when
both are present in the same place of interest (POI), in a certain bucketed time period (e.g. hour or
day) [3, 4, 5, 6, 7]. For the latter approach, we denote the probability that agents ui and uj come in
contact with one another in POI p during time bucket t as C(t)

ui,uj ,p. Assuming independence, we can
compute this probability as the product of the marginal probabilities that ui and uj visit p during t,
respectively. Namely, our strategy is to estimate the right hand side of C(t)

ui,uj ,p = P
(t)
ui,p · P

(t)
uj ,p.

Estimating such probabilities of contact first requires addressing some important limitations in this
type of data—an issue that has received little attention in the recent literature. An initial concern is
the definition of the locations in which contacts are assumed to occur; using a database of physical
venues or POIs (as in [5, 3, 7]), provides a very accurate estimation of human contact but it will
exclude all the contacts occurring in other places not in the data—biasing the estimates if the sample
of POIs is small and not representative. Alternatively, using administrative areas can achieve full
spatial coverage of a region (as in [6]), but will estimate contact poorly since the areas are too large.
Another issue is related to the sample of individuals, which can be small, geographically biased,
and can change in composition over time as data from different apps is included or excluded. Thus,
normalization is needed when estimating patterns and numbers of visits for the whole population;
simple approaches like weighting the number of visitors in a given hour [?, 3] will result in very
sparse estimates, since the original visitation data can be extremely sparse. A third aspect of dealing
with this type of data to construct networks is the level of aggregation: agent-level networks allow for
re-identification of individuals [CITATION] and, in addition, might be too large and make epidemic
models intractable. Privacy is preserved more when individuals are aggregated into communities (e.g.
at the CBG level) then the estimated contact patterns will not capture sub-community heterogeneities.
A final data issue that has been mostly overlooked is the sparsity of the data at the individual level;
namely, there are large gaps of inactivity in user data likely owing to the passive nature of the data
collection. Notwithstanding the possibility that there are measurement biases, accurately estimating
contact patterns for all individuals requires a methodology to estimate such missing activity. The
methodological requirements just described are summarized in Figure 1. In this paper, we tackle the
latter issue by proposing a methodology based on neural collaborative filtering to accurately predict
the location of users that are missing in the data.

Our approach bears resemblance to neural collaborative filtering [8, 9], in which a user’s preference
for an item (in our case a location) is estimated based on the preferences of similar users. This is
achieved by means of a fine-tuned neural network that embeds users and items into low-dimensional
spaces in which similar entities are embeded close to each other; this neural network then uses such
latent representations to predict the preference of users for items. This collaborative filtering problem
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can be interpreted as a link prediction problem in a relational graph, in which a user u is connected to
a location p with the relation t, if u visits p at time t.

Our approach makes use of a novel approach to generate informative and factual negative samples.
We demonstrate our method on real anonymized GPS mobility data from hundreds of thousands of
smartphone devices in the city of Philadelphia during 2020.

Our contributions can be summarized as:

• A new methodology applying deep-learning-based link prediction to large-scale GPS data to
generate epidemic networks.

• A negative sampling methodology that makes training more efficient by proposing factual
and informative negative samples.

2 Methodology

2.1 Location Data

We use GPS human-mobility data from a leading location intelligence company2 consisting of
location data aggregated from millions of devices in the US and sourced using the location services
of thousands of mobile apps in which users have consented to location-sharing. The data consists
of time-stamped GPS coordinates tied to unique anonymized device identifiers. We have access
to a derivative dataset in which pings corresponding to user stops (or stays) are clustered together
using a variation of the DBScan clustering algorithm [10], which are represented as a centroid and
duration. We also identify a individual’s weekly home location as the location3 where they spend
most night hours in the preceding 6 weeks, conditional on visiting that location at least three different
weeks. Predicting users’ visits to locations requires attributing a given venue or location to each stay;
while visitation data tied to specific business venues is offered by many providers and is common
in location prediction tasks [12], we prefer to join stays at the coarser level of Census block groups
(CBGs) to not exclude stays from our analysis, nor bias our results if the sample of POIs is biased.
The CBG associated with a user’s home stays is further replaced with the token location “HOME”.
This censoring protects user privacy and reflects the modeling assumption that we are only interested
in contacts outside of households (individuals in the same CBG in the same hour are not at risk of
infection if they are home).

Our models are trained and tested using GPS mobility data from the city of Philadelphia; i.e. GPS
pings that fall within the Census designated urban limits. As an initial step, we cluster pings using a
time-augmented implementation of DBSCAN [13] that results in stays; clusters of pings attributed
with a centroid, a start time and a duration. We further prepare the data by “exploding” each stay into
the hours the stay straddles. This results in triples of the form (u, t, ℓ) representing that user u was
present at location ℓ during (part of the) hour t. These triples represent a subset of observed edges
in a temporal bipartite graph. The training is performed on the week of 04/01/2020 - 04/07/2020
and validation is done in the following week corresponding to 04/08/2020 - 04/14/2020. There are
50,403 users in the sample for which there is an identified home location in the training period.
However, at the user level there is significant sparsity in the signals of a given user. Figure 2 shows
the distribution of a statistic measuring coverage at the individual level; namely, the fraction of the
hours of the training week with at least one stay. As it can be observed from this skewed bimodal
distribution, over 50% of the users are observed less than 25% of the hours—implying that many
visits and spreading events are not observed.

2.2 Location Prediction with Neural Collaborative Filtering

As it was mentioned in the introduction, our main goal is to predict the visits of a given user for every
hour of the week using sparse data. Because we only observe a given user for a fraction of the time,
we rely on a NCF approach to predict the likely locations visited in the missing hours; effectively
learning mobility patterns of a user from the data of similar users. NCF has been proven to be more

2Kept anonymous while pending pre-publishing review by the provider.
3These locations correspond to geographic tiles known as geohash-7 [11], to which stays are uplifted.
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Figure 2: (a) Methodology to process location data and construct a temporal bipartite graph. (b)
Distribution of user-level coverage, defined as the number of hours of the week of 01-04-2020 that
have a stay from the user (an observed link in the bipartite graph); the distribution is bimodal and we
use the median to divide between high coverage and low coverage users.

versatile than matrix factorization for recommender systems [14, 9]; the latter being constrained by
the linearity of the output and the inability to incorporate side information.

For our experiments, we split data from our first week into training and validation sets using an
80-20 cross-validation setup, and we use the second week as held-out test data. For training and
validation we construct records of the form (u, i, t) where u is a user, i is a location the user visited,
and t is an hour of the week. To this end, we simplify the problem by constructing several records
from a single stay which might have an arbitrary duration, into a single record for each hour that
the stay straddles. Data from a single stay is not split across training and validation sets, and the
inputs are formatted as one-hot vectors. Furthermore, we note that predictions in the test set are only
possible for users from the first week with activity in the second week. We use the neural network
architecture shown in Figure 3. This architecture maps one-hot representations of users and venues
into 12-dimensional embeddings and keeps the day and hour as one-hot. We use 5 hidden layers
of 32, 16, 8 and 4 neurons, with Leaky-RELU activations; as well as a binary cross-entropy loss
function on the outputted probability of u visiting i at time t. These hyper-parameters were fine-tuned
using five-fold cross-validation. We implemented batch-normalization and early stopping based on
validation set ROC AUC score.

2.3 Negative Sampling

Most recommender systems suffer from the “single-class” problem and it has been established
that their performance depends critically on the methodology to augment the data with negative
samples [15, 16]. In our particular problem, we also lack negative data on user locations. One
of the contributions of our work is to measure the impact of a negative sampling methodology
in the problem of predicting locations using spatial data. A baseline negative sampler which is
widely used in recommender systems is random negative sampling (RNS) [17], which samples from
the unobserved user-item pairs uniformly at random; typically maintaining a K : 1 proportion of
negatives to positives for each user.

More sophisticated negative samplers can make use of side information [18], knowledge graphs
describing items [15], adversarial generation of negatives [19], among others. These methods perform
well because they produce negative samples that are informative for the training of the recommender
system—likely because they are near the support of the distribution of positive samples and, thus,
have non-negligible gradients [15, 20]. However, negative samples should also strive to be factual
and minimize the risk of false negatives. Several heuristics have been proposed to address the issue of
false negatives (e.g. viewed but not clicked items for online purchases [18]) or making assumptions
based on the popularity of items not observed (popular items not chosen are likely not preferred [15]).
However, this issue remains unresolved for this class of problems and it is expected that a negative
sampler producing negatives close to the support of the positives’ distribution will significantly
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Figure 3: Proposed neural network architecture for inference of missing visits using neural collabora-
tive filtering. users, locations and times (at which users were in the locations) are embedded into a
latent space. A nonlinear function predicts the likelihood of a visit from the user to the location or,
analogously, of a link in the temporal bipartite graph.

increase the risk of false negatives and affect performance. This is demonstrated in [15], where
popularity-based negative sampling (PNS) is outperformed by the benchmark RNS.

An important contribution of our work is our proposed approach to produce high quality negative
samples which is specific to this type of data. Namely, we leverage the fact that users are expected to
be in only one location during a given time—constraining the temporal user-location bipartite graph.
We sample true negatives in the following way: for each user u select an hour t uniformly at random
out of the hours for which user u has observed activity (i.e. a link), then, select a location ℓ at random
to form the negative (u, t, ℓ). Our benchmark sampler RNS selects ℓ uniformly at random from all
the possible locations. To illustrate the benefits derived from restricting the sampler to true negatives,
we compare the benchmark with a popularity-based true negative sampler (PTNS), which samples the
location ℓ based on popularity. We regularize the frequency distribution as in [21]. For our evaluation
on held-out data we consider two metrics:

• HR@K or hit-rate at K. Is constructed by predicting probabilities of links of the form
(u, t, ∗) for every observed link (u, t, ℓ) in the held-out set and obtaining a 1 if the true link
is in the top 10 scoring candidates. The HR@K measures the average for all observed links.

• F1-score of the binary classification task of predicting whether a link occurs or not. We
compute this augmenting the test data with true negatives sampled using RNS in a proportion
10:1.

3 Experiments

3.1 Held-out set validation

In this section, we validate the ability of our model to predict human mobility, with the traditional
area under the ROC curve and F1-score metrics. Our finely-tuned model, using PTNS for negative
sampling, is tested in the held-out week of (04/08/2020-04/14/2020). We remark that this is held-out
set is not ideal because mobility patterns might change from week to week—due both to changes in
individuals’ circumstances, and also broad external shocks (e.g. government mandates)—and could
result in the test set to have a different data distribution. In spite of these limitations, our model is
able to accurately predict the mobility patterns of agents in the held-out set. Figure 4 shows the ROC
curve, as well as a confusion matrix for a threshold of 0.5. This network obtained an AUC score of
0.7685 and an F1 score of 0.6795 (threshold of 0.5), showing moderate performance in predicting
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all users high cover users low cover users
HR@10 F1 HR@10 F1 HR@10 F1

RNS - 0.575 - 0.581 - 0.581
PTNS - 0.67 - 0.72 - 0.57

Figure 4: Performance metrics out-of-sample for the fine-tuned NN trained on data from 04/01/2020 -
04/07/2020 and tested on data from 04/08/2020-04/14/2020.

locations out of sample. Our PTNS method outperforms the benchmark for high and low-coverage
users.

3.2 User embeddings and stability

Inspired by NLP applications of semantic embeddings [21], we study the low-dimensional represen-
tation of users in the embedding layer of our model. Upon the completion of training, the cosine
similarity between every pair of users’ embeddings is a succinct and efficient metric of the similarity
in their mobility patterns. In Figure 5 we can see a T-SNE [22] visualization of the user embeddings
after training; a simple K-means clustering has been applied to identify sub-populations with similar
mobility patterns, and the weights across sub-populations can be used to construct an epidemic
network.

In the absence of ground truth data on which users actually have similar visitation patterns it is
difficult to evaluate the quality of these user embeddings. A weaker form of evaluation is to evaluate
whether the embeddings of users are stable [23] from one week to the next. We do this by training
a model on the two week’s worth of data and splitting a fraction of users into two “doppelganger”
users, each containing data from one week. We restrict this validation experiment to users with the
top 10% of activity since they have a richer set of venues to validate against. Ideally, we would split
the data of one user at a time, to test the user’s stability in isolation. Because this is impractical, we
split the users in batches of 10% at a time. The embeddings derived from training with two weeks of
data should result in doppelgangers boasting significantly higher similarity scores than two arbitrary
users. Our validation confirms this with doppelgangers having an average similarity score of 0.2366
and an average similarity score between any two users of 0.0065. Figure 5 displays comparisons
between the similarity scores of our 10 batches of doppelgangers. When comparing doppelgangers’
similarity scores to the distribution of all pairs’ similarity scores, the doppelgangers’ similarities
have an average z-score of 2.8261. In addition, 36.13% of doppelgangers appeared as one of the
top 10% most similar users to themselves in the previous week. Taken together, these suggest that
doppelganger pairs are embedded more closely together than non-doppelganger pairs are, implying
that the neural network indeed learns high-quality embeddings for users.

3.3 Defining contact between users

Although embedding similarity could be a good indicator of users having similar mobility patterns
and, thus, having a probability of contact, our framework allows us to directly estimate contact by
using the outputs of our trained model. Explicitly, by inputting all combinations of users, venues, and
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Figure 5: a) TSNE visualization of user embeddings derived from our NCF framework. b) Comparison
of cosine similarity between doppelganger pairs and all pairs. The experiment is repeated in ten
batches, all but one reflect that doppelgangers are much closer than average, validating the quality of
these embeddings.

times, we can estimate the probability that a user u visits venue v at time t. Upon calculating these
probabilities, we can estimate the probability that two users are in the same venue in the same hour
by summing the probability that 2 users u1 and u2 are both at venue v at time t over all venues v.
Summing the probabilities of co-location over the 24 hours in a day yields the expected number of
hours that two users are at the same location.

4 Conclusion

Since the first results in networked mathematical epidemiology, the central object of study—an
epidemic network describing contact between individuals—has remained elusive and difficult to
estimate from data. Can GPS human mobility data finally help bridge the gap between theory
and applications by providing such networks? In this paper, we propose a novel methodology to
construct those contact networks and addresses the main challenge of user-level sparsity in GPS
signals. Current contact networks do not factor sparsity into their models, which could lead to
problematic inferences of users’ mobility trends. Our NCF model avoids learning an incomplete
set of information by leveraging similar users’ information. Thus, even though individual users do
not have complete coverage, NCF can fill in “missing visits" using similar users’ behaviors. Our
two methods of validation suggest that our model indeed learns users’ behavior and can predict
future mobility trends at an hourly granularity. This further implies that our model can account for
users’ dynamic movements and use these fine-grained observations for studying human contact and
mobility.
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