
Adapting the Function Approximation Architecture in
Online Reinforcement Learning∗

John D. Martin†

Department of Computing Science
University of Alberta / Amii

Edmonton, AB, Canada
jmartin8@ualberta.ca

Joseph Modayil†
DeepMind

Edmonton, AB, Canada
modayil@deepmind.com

Fatima Davelouis Gallardo
Department of Computing Science

University of Alberta / Amii
Edmonton, AB, Canada
daveloui@ualberta.ca

Michael Bowling
DeepMind &

Department of Computing Science
University of Alberta / Amii

Edmonton, AB, Canada
mbowling@ualberta.ca

Abstract

The performance of a reinforcement learning (RL) system depends on the compu-
tational architecture used to approximate a value function. We propose an online
RL algorithm for adapting a value function’s architecture and efficiently finding
useful nonlinear features. The algorithm is evaluated in a spatial domain with
high-dimensional, stochastic observations. Our method outperforms non-adaptive
baseline architectures and approaches the performance of an architecture given side-
channel information about observational structure. These results are a step towards
scalable RL algorithms for more general problem settings, where observational
structure is unavailable.

1 Introduction

Architectures for value function approximation typically impose sparse connections with prior knowl-
edge of observational structure. When this structure is known, architectures such as convolutions,
transformers, and graph neural networks can be inductively biased with fixed connections. However,
there are times when observational structure will be unavailable or very difficult to encode as an
architectural bias—for instance, relating sensors that are randomly dispersed in space. Yet in these
situations it is still desirable to approximate value functions with a sparsely-connected architecture
for computational efficiency. We explore the open question of whether useful representations can be
constructed when observational structure is unknown—particularly in the incremental, online setting
without access to a replay buffer.

Prior work has viewed the structure of observations as a hidden aspect of the environment [1]. Fixed
architectural topologies have previously been used to relate inputs; these methods examined small
input spaces, a combinatorially-large space of graphs [6], or offline methods that learn to reduce
connections of a dense architecture [2]. Early work treated observational structure as the learning

∗This extended abstract builds on the following article: “J. Martin, J. Modayil. Adapting the Function
Approximation Architecture in Online Reinforcement Learning. CoRR abs/2106.09776, 2021"

†Equal contribution. Correspondence to John D. Martin

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



target: first positing a family of smooth topologies then selecting one to minimize a reconstruction
loss [4].

We propose an online algorithm that adapts connections of a neural network using information
deriving strictly from the reinforcement learning (RL) agent’s experience stream, using many parallel
auxiliary predictions. The algorithm is validated in a synthetic domain with high-dimensional
stochastic observations. Results show the algorithm can adapt an approximation architecture without
incurring substantial performance loss, while also remaining computationally tractable. Code has been
made publicly available at https://github.com/jdmartin86/frogseye. Our key contributions
are as follows.

Online adaptive architecture with reduced inductive bias: Using many parallel auxiliary learning
objectives, our architecture dynamically connects observations to a set of filter banks to form useful
nonlinear features.

Useful neighborhoods: The proposed algorithm is shown to compute sparse neighborhoods that
perform comparably well to neighborhoods formed from side-channel distance information, and it
substantially outperforms static baseline architectures.

2 Problem Setting

Algorithm 1 Online Value Estimation with
Prediction Adapted Neighborhoods

1: Initialize: w, z, A (fixed), a (fixed), M1:m,
w̄1:m, z̄1:m.

2: Receive observation o1 from the environment.
3: x1 ← ComputeFeatures(o1,M

1:m,A,a)
4: for t = 1, 2, 3, · · · do
5: Receive rt+1,ot+1 from the environment.
6: x̄j ← oj for j ∈ {t, t+ 1}
7: parallel for i ∈ {1, · · · ,m}

# Update GVF weights with TD(λ).
8: r̄it+1 ← ot+1[c(i)]

9: δ ← r̄it+1 + γw̄i⊤x̄t+1 − w̄i⊤x̄t

10: z̄i ← γλz̄i + x̄t

11: w̄i ← w̄i + ᾱδz̄i

# Construct top-k selection matrix.
12: ℓ← Top(k, w̄i)
13: parallel for j, l ∈ [1, k]× [1, d]
14: Mi

j,l←1{l = ℓj}
15: yi ← f(AMio+ a)
16: xt+1 ← concatenate(o,y1, ...,ym)

# Update main prediction weights with
TD(λ).

17: δ ← rt+1 + γw⊤xt+1 −w⊤xt

18: z← γλz+ xt

19: w← w + αδz

We are interested in the continual setting where
the learner needs to adapt to changes in the
environment in real time. More specifically,
this work considers the standard RL predic-
tion setting [10]. The return at time t ∈ N is
the discounted sum of future rewards, Gt ≡
Rt+1 + γRt+2 + γ2Rt+3 + . . . . The value
function gives the expected return from a state:
v(s) ≡ E[Gt|St = s]. Instead of experiencing
states directly, the learner receives a stream of
observation vectors ot ∈ Rd and rewards. The
learner’s only knowledge of the environment
state St and dynamics comes from this single
stream of experience. With no direct access
to the environment state, the learner forms an
approximate value function to estimate the ex-
pected return. In RL, temporal difference (TD)
learning is a commonly used online approxima-
tion technique — at each time step, the agent
sees a new observation and reward, which are
used to update state value estimates, as follows:

v̂(ot)← v̂(ot) + α
[
rt+1 + γv̂(ot+1)− v̂(ot)

]
where α denotes the step-size. Under a linear
approximation, the value function is defined as
a function of a feature vector xt ∈ Rℓ, where

v̂(xt;wt) ≡ w⊤
t xt, v̂(xt;wt) ≈ v(St). (1)

In this work the learner incrementally updates its weights wt online with a TD algorithm.

2.1 An approximation architecture for the online setting:

We consider an architecture that computes nonlinear features from a sparsely-connected neural
network with one hidden layer of random weights. A neighborhood is the set of inputs connected
to a given nonlinear feature in the network; here it contains a sparse subset of the input, similar to
an image patch used with convolutional architectures for vision. Nonlinear features from the i-th
neighborhood are computed as a composition of three functions, yi

t ≡ f(AMiot + a). First is a
neighborhood selection matrix Mi ∈ {0, 1}k×d, then a linear projection A ∈ Rn×k shared between
all the neighborhoods, and lastly a nonlinearity f : Rn → Rn. The neighborhood selection matrix Mi

2

https://github.com/jdmartin86/frogseye


is an orthogonal rank-k matrix with one-hot columns—used to mask out an ordered selection of k
elements of the observation. The linear projection A can be thought of as a set of filters, and a ∈ Rn

is a bias. The function f applies a fixed nonlinearity f : R→ R to each element of its n-dimensional
input: f(z) = (f(z1), ..., f(zn)). The full feature vector, xt, contains nonlinear features from m
neighborhoods, Miot, and the current observation, xt ≡ concatenate(ot,y

1
t , . . . ,y

m
t ).

3 Prediction Adapted Neighborhoods

We propose using information that derives from auxiliary RL predictions, specified as general value
functions (GVFs) [11]. The resulting collections of observation subsets are called prediction adapted
neighborhoods. This idea stems from the insights of previous works [8], [5], [9].

A GVF is defined as the expected return of some auxiliary reward signal R̄i
t+1, known as a cumulant.

Here auxiliary rewards are given by observation components, and their returns are predicted under
the same discount and policy as the main value function (1): Ḡi

t ≡ R̄i
t+1 + γR̄i

t+2 + γ2R̄i
t+3 + . . ..

A selector function c(i) returns an index into the observation vector to determine the i-th cumulant
r̄it+1 ≡ ot+1[c(i)], for i = 1, · · · ,m. In this work, GVFs are approximated by linear functions of the
observation x̄t ≡ ot, with weights w̄i: w̄i⊤x̄t ≈ E[Ḡi

t|St = s].

One of our key discoveries is that observations can be related when used as auxiliary rewards for
linear GVFs. Recall a GVF in this work predicts the future discounted sum of an observation signal.
Also recall that a GVF is approximated with a linear combination of all observation components.
Those components that closely relate to an auxiliary reward tend to have high-magnitude prediction
weights. Based on this principle, prediction adapted neighborhoods are formed with observations
with high absolute GVF weights w̄i.

Algorithm 1 outlines how to compute prediction adapted neighborhoods in the online prediction
setting (lines 6–14), with TD(λ) and accumulating traces z. The algorithm constructs each neighbor-
hood with the k observations whose absolute GVF weights are largest (lines 12–14), and it encodes
them with the selection matrices Mi.

In contrast to prior work that regularizes the internal architecture weights A with auxiliary prediction
losses [3], our method uses auxiliary GVFs to impose sparse connections with a predictive structure.
This information derives entirely from the observation stream, with no a priori knowledge of the
observational structure. Our proposed algorithm continually adapts the architecture’s connections in
response to patterns of the observation stream.

4 Empirical Results in the Frog’s Eye Domain

Figure 1: The Frog’s Eye domain:
An insect (gray circle) is detected by
irregularly-distributed proximity recep-
tors (blue: on, gold: off). Insect trajec-
tories are shown in mauve. A reward of
+1 is received upon entering the circular
red region.

Drawing inspiration from the arrangement of light recep-
tors in a frog’s eye, we introduce an environment for study-
ing continual prediction in the absence of observational
structure (Figure 1). In our environment, light receptors
have a uniformly-irregular spatial distribution. A simu-
lated frog needs to anticipate the arrival of an insect with-
out any knowledge of how its light receptors relate to one
another.

The full observation vector ot ∈ {0, 1}4000 is given from
a random ordering of 4000 proximity receptor outputs.
These receptors are scattered randomly at the start of
learning and then held fixed. Observations are corrupted
with fifty-percent uniform binary noise. The reward is +1
whenever the insect enters a circular region at the center
of the observable space, and it is zero otherwise. An insect
entering the circular region will disappear and respawn at a random location. This process continues
indefinitely.

Evaluation: Our experiments compare prediction error of different value function architectures
while specifically controlling for the effects of neighborhood selection. All our baselines use
TD(λ) for policy evaluation with state value functions. We compare empty neighborhoods with

3



m = 0 (denoted as Linear), sparse neighborhoods with k randomly-selected observation components
(Random), prediction adapted neighborhoods from fixed randomly-selected cumulants (Adaptive),
and sparse neighborhoods containing the k-nearest sensors to each cumulant using side-channel
distance information (Distance). We also report the average and standard error confidence intervals
from 30 trials, which were run to 5 million steps and observed to complete in under two hours on a
V100 GPU. Results that used the ReLU nonlinearity are shown in Figure 2. Similar trends were also
observed with the LTU and Majority filters. More experimental details including information about
hyperparameter selection are provided in the full-length paper [7].

4.1 Prediction Adapted Neighborhoods are Useful

Figure 2: The Adaptive architecture (us-
ing prediction adapted neighborhoods)
approaches the performance of Distance
(biased with knowledge of observational
structure). Adaptive also performs bet-
ter than fixed architectures using random
neighborhoods (Random) or none at all
(Linear).

Our first experiment asks: do prediction adapted neighbor-
hoods provide measurable utility for approximating the
main value function? Figure 2 shows learning curves of
prediction error. The Adaptive architecture—using predic-
tion adapted neighborhoods—leads to little performance
loss compared to the Distance architecture when evalu-
ated across three types of activation functions. Recall
the Distance architecture uses neighborhoods that contain
the k-nearest sensors to each cumulant. The small per-
formance gap between Adaptive and Distance suggests
that prediction adapted neighborhoods are just as useful
in this domain as neighborhoods biased with side-channel
distance information.

4.2 The Spatial Structure of Adapted Neighborhoods

A final inspection examined whether the prediction
weights of a GVF contained any spatial structure. Figure 3
shows one set of auxiliary weights as learning progresses
for a randomly-selected GVF. Clearly there are GVFs
whose weights encode a local degree of spatial structure.
Furthermore, this structure appears temporally stable over
the extended regime of ten million time steps. These two
points highlight that even without prior knowledge of the
observation’s spatial structure, auxiliary GVFs are able to
relate observations in a similar way—ultimately one that
is useful for the main prediction.

Figure 3: A spatial distribution of auxiliary weights is shown for a random GVF with a cumulant
marked by an ×. The top ten neighborhood converges around the cumulant.

5 Conclusion

This paper addressed how an RL system could construct a value function architecture in the incre-
mental online setting for prediction, and in the absence of observational structure. One of our key
discoveries was that weights of auxiliary predictions could be used to relate observations and impose
useful sparse connections in a random neural network approximating a value function. We believe
this work could be useful for designing general RL systems that acquire knowledge from sensory
inputs whose observational structure is unknown. Moreover, our work opens avenues that could
allow designers to reduce the amount of architectural bias imposed. In future work, we would like to
address some limitations of the current study; for instance, we would like to explore how to optimize
the network’s hidden weights online and in the RL control setting.

4



References
[1] R. Evans, J. Hernández-Orallo, J. Welbl, P. Kohli, and M. Sergot. Making sense of sensory

input. Artificial Intelligence, 293:103438, 2021.

[2] T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[3] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu.
Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397,
2016.

[4] N. Le Roux, Y. Bengio, P. Lamblin, M. Joliveau, and B. Kégl. Learning the 2-d topology of
images. Advances in Neural Information Processing Systems, 20:841–848, 2007.

[5] M. L. Littman, R. S. Sutton, and S. P. Singh. Predictive representations of state. In Advances in
Neural Information Processing Systems 14, pages 1555–1561, 2001.

[6] A. R. Mahmood and R. S. Sutton. Representation search through generate and test. In Workshops
at the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.

[7] J. D. Martin and J. Modayil. Adapting the function approximation architecture in online
reinforcement learning. arXiv preprint arXiv:2106.09776, 2021.

[8] J. Modayil, A. White, and R. S. Sutton. Multi-timescale nexting in a reinforcement learning
robot. Adaptive Behavior, 2014.

[9] D. Pierce and B. J. Kuipers. Map learning with uninterpreted sensors and effectors. Artificial
Intelligence, 92(1-2):169–227, 1997.

[10] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[11] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski, A. White, and D. Precup. Horde:
A scalable real-time architecture for learning knowledge from unsupervised sensorimotor
interaction. In The 10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, pages 761–768, 2011.

5


	Introduction
	Problem Setting
	An approximation architecture for the online setting:

	Prediction Adapted Neighborhoods
	Empirical Results in the Frog's Eye Domain
	Prediction Adapted Neighborhoods are Useful
	The Spatial Structure of Adapted Neighborhoods

	Conclusion

