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Abstract

Deep learning architectures lead the state-of-the-art in several computer vision,
natural language processing, and reinforcement learning tasks due to their ability
to extract multi-level representations without human engineering. The model’s
performance is affected by the amount of labeled data used in training. Hence,
novel approaches like self-supervised learning (SSL) extract the supervisory signal
using unlabeled data. Although SSL reduces the dependency on human annotations,
there are still two main drawbacks. First, high-computational resources are required
to train a large-scale model from scratch. Second, knowledge from an SSL model
is commonly finetuning to a target model, which forces them to share the same
parameters and architecture and make it task-dependent. This paper explores how
SSL benefits from knowledge distillation in constructing an efficient and non-task-
dependent training framework. The experimental design compared the training
process of an SSL algorithm trained from scratch and boosted by knowledge
distillation in a teacher-student paradigm using the video-based human action
recognition dataset UCF101. Results show that knowledge distillation accelerates
the convergence of a network and removes the reliance on model architectures.

1 Introduction

Due to their classification performance and ability to extract multi-level representations without
human engineering [6], deep neural networks (DNNs) are considered state-of-the-art in various
computer vision [8, 21, 1], natural language processing [8, 19], and reinforcement learning tasks
[18, 17],

Nevertheless, the model’s performance is affected by two factors [31, 13]. On the one hand, DNNs
involve sophisticated architecture designs [31], leading to over-parameterized models requiring
extensive computational resources [31]. GPT-3 [15], one of the achievements in natural language
processing models, consists of 175 billion parameters and is projected to require 3.14E23 FLOPS of
computing. Using a V100 GPU will take 355 GPU years and cost around 4.6 million [15].

On the other hand, DNNs are usually trained in a supervised manner, requiring numerous high-quality
labels [13]. Building a labeled dataset is an expensive process [13] that implies defining labeling
manuals, class categories, storage pipelines, and labeling each observation by itself or by hiring
an annotation service. For example, for a person, replicating the labeling process of ImageNet [7],
composed of 14 million observations, will take 22 years [7]. On the other hand, people upload about
1 billion pictures and 300 hours of video to Facebook and YouTube daily, making it impossible to
label.

A promising approach is self-supervised learning (SSL) [13], a novel learning schema that provides
natural supervision using unlabeled data without human engineering. Nevertheless, SSL models still
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require high computing resources to train large-scale models [31, 34]. Second, feature representations
learned by SSL are transferred to a target model using a finetuning methodology [9, 31], which
exploits architecture-specific cues and, therefore, forces the models to share the same architecture’s
design and transfers only a facet of the SSL knowledge [34, 9].

Recent improvements [34] in the image and natural language processing suggest that knowledge
distillation (KD) [9, 14, 34] can improve the efficiency of self-supervised methods. However, its
application still needs to be clarified for video tasks [31].

This paper explores how SSL benefits from knowledge distillation in constructing an efficient and non-
task-dependent training framework in a video-based human action recognition task. The experiments
consist of three parts. First, we establish a baseline to assess the possible improvements in the
model training and serve as the teacher models for the student’s networks. The baseline are formed
with C3D [34], R3D [28], and R(2+1)D [29] architectures, trained using the PCL [27] framework.
Second, we train a student network with identical parameters as its teacher counterpart using KD to
guide the student learning process. Third, we train the student model in a multi-architecture design
configuration.

Our results show that knowledge distillation accelerates network convergence and removes the
constraint of using the same architectural design. Providing flexibility in model target construction
based on the application domain.

We divide the rest of this document as follows: We define the theoretical framework in section 2.
Then, in Section 3, we introduce our proposal and define the experimental design. Next, in Section 4,
we discuss the experimental design results. Finally, we provide our conclusions and future work in
section 5.

2 Related Work

2.1 What is a human action?

To better comprehend the idea behind an action, picture the image of a person greeting another.
Probably, the mental image formed involves the well-known waving hand movement. Likewise,
if we create a picture of a man sprinting, we may construct a more dynamic image by focusing
on the person’s legs, as shown in Fig. 1. We unconsciously associate a particular message with a
sequence of movements. This encoded sequence of gestures is what we will call "an action" [2]. The
human action recognition goal is to build approaches that can understand the encoded message in the
sequence.

Figure 1: We instinctively associate a sequence of gestures with an action. For example, when we
think of the action greeting, we might think of the typical hand wave. On the contrary, imagining a
person running will create a more dynamic scene with movement centered on the legs. An action can
be defined as a sequence of gestures that encode a message.

Handcrafted [35, 3, 4] and feature-learned [11, 36] methods are the two main approaches to rec-
ognizing human actions in the video. On the one hand, handcrafted [35, 3, 4] approaches entail
manually engineering features [6], i.e., we must develop characteristics that support a computer
to understand the human action concept. On the other hand, feature learning [36] methods extract
multi-level representations without human engineering [6], which outperforms the performance of
handcrafted methods. A popular setup is two-stream networks [24]. The concept is simple. On
the one hand, a network extracts spatial characteristics from RGB images. On the other hand, a
parallel network extracts motion information from optical flow information. Carretera et al. [5]
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introduced the kinetics dataset as the foundation for re-evaluating the state-of-the-art architectures
and the knowledge acquired to propose Two-Stream Inflated 3D ConvNet (I3D). I3D [5] demonstrates
that 3D convolutional networks can be pretrained. Pretraining is a common practice for reducing
processing time and the number of labeled data [26]. As a result, the concept of 2D CNN inflation
was further researched [32, 20], resulting in novel architectures such as R(2+1)D [29].

2.2 Learning schemes

Video-based human action recognition approaches usually work on a supervised methodology [13],
where the training algorithm employs labeled samples. Each label is usually annotated manually. Nev-
ertheless, label annotation is a manual process that makes it expensive to process a high-dimensional
dataset [34]. Consequently, reducing the dependency on labeling emerges as a research direction [12].
Self-supervised learning (SSL) [12, 13] relies only on unlabeled data to provide natural supervision.
Its goal is to extract visual features whose performance is equal to or better than their supervised
counterparts. SSL approaches are divided into two main branches [27]: Pretext tasks and contrastive
learning [16]. On the one hand, pretext tasks define a classification function to understand the intrinsic
nature of data samples [27]. Defining an auxiliary function is a challenging problem with ongoing
developments. Some examples include a network if a set of video-frame has a consistent temporary
line [10] or asking the network which transformation techniques were applied to an input frame [27].

On the other hand, contrastive learning [16] identifies what aspects of a video sample make it different
from other samples. The core idea is to train a network to identify if two pairs of video features were
extracted from the same video distribution. In this perspective, both types are complementary, as
suggested in Pretext Contrastive Learning (PCL) [27]. PCL [27] is a joint optimization framework
that uses a pretext task function to capture the local information and uses contrastive learning loss
functions to gain a global view.

2.3 Knowledge Transfer

Label annotation is expensive and only practical for some application domains [13]. Hence, sharing
the model knowledge is essential to reduce label dependency. Transfer learning [33] and finetuning
[23] are the standard methods for transferring knowledge from one model to another, and they
leverage the multi-level representations learned from deep learning architectures. The key idea is that
some class objects share low-level features and can be used to re-construct a comparable entity [23].
The workflow of transfer learning and finetuning [23] consists of adding trainable layers on top of a
model [33]. However, the transfers become architecture-dependent and, consequently, task-dependent
[34].

Recently, knowledge distillation [34, 31, 9] served as the foundation of a novel approach to transfer
learning. In contrast to the finetuning [23] and transfer learning techniques, KD [9] does not build
on top of the pretrained model. Instead, KD [9] defines a teacher and student framework where the
teacher uses the model’s outputs as guidance.

KD has previously been explored in the literature [34, 31, 9, 22, 30], achieving remarkable perfor-
mance. [22] explores how knowledge distillation serves as auxiliary supervision to efficiently learn
larger pretrained language models. SSKD [34], which uses KD to extract richer dark knowledge,
is proposed to improve image classification performance. In [30], they explore how KD affects the
video action recognition task in a self-distillation approach. Our work differs from [30] because we
explore how KD affects a self-supervised approach inside an action recognition, whereas [30] works
under a supervised methodology. Also, [30] proposed self-distillation methods that use previous
versions of the teacher. Our method aims to leverage what the community has already trained and use
it in a traditional KD approach.

3 Proposed Work

This document aims to study how knowledge distillation affects a self-supervised methodology in the
human action recognition video task. We are interested in how the convergence of the model and
classification performance is affected using multiple architecture designs.
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Figure 2: Knowledge distillation and self-supervised learning framework for video tasks. The loss
function for the student will be composed of both self-training using the PCL scheme and the guidance
of a master model using the relative entropy between the outputs of the two models.

The intuition is that the learning capabilities of humans are not limited to self-taught. Instead, since
we are children, our training has been surrounded by various teachers who filter knowledge and
provide it in a way that facilitates knowledge assimilation. In the deep learning community, we
have already trained many models. Nevertheless, we usually train a new model from scratch or use
transfer learning techniques that, as previously described, force the target model to share the same
architectural design.

To transfer knowledge, we follow a traditional KD teacher-student framework [34, 9], described in
Fig. 2. The key idea is to learn through imitation by requesting the student network to mimic the
teacher’s network probabilities. To increase the information students can learn, we scale the softmax
probabilities using a temperature value to remove probabilities near zero. The output probabilities are
compared using the Kullback-Leiber divergence [9], also known as relative entropy.

We train the SSL models using the PCL framework, with the pretext task being "which transformation
was done to the input video" using the cross-entropy function. Furthermore, we use a perceptron as
the projection head for contrastive loss.

We tested the widely used C3D [34], R3D [28], and R(2+1)D [29] architectures. Testing on multiple
video architectures reduces the bias in the experiments and, therefore, gives a firm notion about the
effectiveness of the knowledge transfer. Furthermore, employing several architectures allows us to
reduce the influence of the learning rate bias on model convergence caused by the diverse number of
parameters used in tested architectures.

To provide flexibility and help the student outperforms the teacher model [34], in addition to the
teacher guidance, we add both the pretext and the contrastive loss in the training algorithm, as shown
in Fig. 2,

We conducted the experimental design using the UCF101 [25] dataset, a benchmark dataset in action
recognition tasks. This dataset consists of 13,320 videos collected from YouTube and divided into
101 categories.

The experiments consist of three parts. First, we establish an SSL baseline and then transfer between
the same architecture and different architectures. Let us break down each experiment set; the first one
aims to establish a baseline to assess the possible improvements in the model training and serves as
the teacher models for the student’s networks. The baseline are formed with C3D [34], R3D [28],
and R(2+1)D [29] architectures, trained using the PCL [27] framework with the same parameters
over 100 epochs.

The second and third experiments investigate how KD influences SSL. To begin, we train a student
network with identical parameters as its teacher counterpart. This experiment determines whether KD
is a viable way of knowledge transfer. Second, we train the student model with different architecture
designs to its teacher model to demonstrate that KD is not model agnostic. We
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Figure 3: Results from our baseline, three architectures were tested using a PCL-based self-supervised
approach. All architectures have similar performance.

Figure 4: Accuracy plot for the training of the student model using the same architecture as its teacher
(R3D). It is observed that the learner model converges faster than the regular model.
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Figure 5: Accuracy plot for the training of the student model using the same as its teacher (R3D). It
is observed that the learner model converges faster than the regular model.

4 Preliminary Results and discussions

Fig. 3 compares the accuracy performance of the C3D [34], R3D [28], and R(2+1)D [29] backbones
on the UCF101 [25] dataset. All the architectures have a similar performance and achieve about 85
percent of classification accuracy by epoch 50. Consequently, to consider that KD benefits the SSL
training process, it should get a higher accuracy or achieve similar performance in a lower epoch
number.

Fig. 4 describes the accuracy of the student model compared to its teacher counterpart using the
R3D [28] backbone. Relevant points include that the student converges faster and outperforms the
teacher’s accuracy in almost half of the epochs. Hence, in the case of the R3D architecture, KD
boosts the SSL training process. On the other hand, Fig. 5 describes the accuracy performance using
the C3D [34] architecture; like the case of the R3D [28] backbone, the student network outperforms
its teacher counterpart in both convergence and classification performance. Furthermore, the insights
are consistent with the R(2+1)D [29] architecture, shown in Fig. 6.

All architectures presented show that using the guidance of pretrained models helps train SSL models
faster without sacrificing performance.

Nevertheless, researchers continuously propose more and more architectures, and the ability to
transfer knowledge using different architectural settings and reuse old knowledge learned in novel
settings is crucial to preserving information. Also, when using different architectural settings, the
transfer is not based on architectural cues but forces the model to transfer the feature representation
of the objects. Finally, different architectural designs enable the training of lower-size models to
suit low-computational power device requirements. In contrast, reusing knowledge to create larger
models is also viable.

Fig. 7 shows the accuracy performance using R3D [28] as the selected architecture for the teacher
and C3D [34], R3D [28], and R(2+1)D [29] for the students. There are two main points from Fig.
7. First, the student networks get comparable performance to their teacher counterpart, enabling
the transfer between different settings. Second, the best model uses different architecture designs;
in this case, using an R3D [28] for the teacher model and a student using C3D [34]. On the other
hand, Fig. 8 describes the model’s performance using C3D [34] for the teacher model and C3D
[34], R3D [28], and R(2+1)D [29] for the students; the figure shows a similar pattern to the R3D
[28] architecture; students tend to outperform and out-converge the master models. Also, in the
same case of Fig. 7, using KD in an SSL setting enables the knowledge transfer between different
architectures settings. Finally, Fig. 9 illustrates the accuracy performance of the teacher model using
the R(2+1)D [29] architecture and C3D [34], R3D [28], and R(2+1)D [29] for the students. The
results are consistent with previous architectures; all the student models converge faster than the
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Figure 6: Accuracy plot for the training of the student model using the same architecture as its teacher
(R(2+1)D). It is observed that the learner model converges faster than the regular model.

Figure 7: Accuracy plot for the training of the student model using different architectures as its
teacher (R3D). All the student models have similar performance to the teacher model. It is possible
to transfer knowledge using different architectures and even outperform the model training using the
same configuration settings.
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Figure 8: Accuracy plot for the training of the student model using different architectures to the
teacher (C3D). All the student models have similar performance to the teacher model. It is possible
to transfer knowledge using different architectures and even outperform the model training using the
same configuration settings.

Figure 9: Accuracy plot for the training of the student model using different architectures as its
teacher (R(2+1)D). All the student models have similar performance to the teacher model. It is
possible to transfer knowledge using different architectures and even outperform the model training
using the same configuration settings.

master model, and transferring knowledge using different architectures is feasible with little-to-none
impact on the classification accuracy.

5 Conclusion

This work explores how self-supervised learning can benefit from knowledge distillation in terms
of convergence, flexibility in architectural design, and performance. Preliminary experiments focus
on testing the effects of knowledge distillation in self-supervised learning using video-based human
action recognition as the application domain. The central insight found:
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• KD is a viable option to transfer knowledge from one model to another for the action
recognition task in a self-supervised framework.

• KD helps a self-supervised model to converge faster for video-action recognition.

• Even if the architecture and hyperparameters are different, it is possible to move knowledge
from a teacher to a student model. A crucial aspect of preserving knowledge. Since
researchers continuously propose more and more architectures. Another advantage is to
create models that fit the application’s constraints better. For example, creating lower-size
models to suit lower-computational power devices or larger models when resources are not
a problem.

• KD provides flexibility in the configuration design that helps students outperform the teacher
model’s classification performance.

Future work considers new datasets, application domains, techniques to assess and visualize learned
features, and novel approaches to distill knowledge.
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