
Graph2step: A System for Knowledge Driven
Procedural Step Generation

Pedro Colon-Hernandez
MIT Media Lab

Cambridge, MA 02139
pe25171@media.mit.edu

Abstract

Procedural step generation (i.e. instruction generation) is an important task, par-
ticularly because of its applicability on fields such as usability of technology and
education. An effective procedural step generation system should be capable of
generating steps to guide a person to accomplish a procedure, and in the case of
a mishap in the procedure, generate steps to correct the mishap and continue and
complete the original procedure. Procedural step generation is complicated for
modern natural language systems, particularly because of knowledge that may
be implicit in the steps, and essential for its completion. We present a work-in-
progress of a multi-part system that is capable of, given a goal and facts related to
a goal, to generate procedural steps to accomplish a procedure. The system is also
capable of reusing past knowledge through a neural memory to handle goal changes
(i.e., mishaps) while performing procedures. To accomplish this, we leverage a
contextual commonsense inference model which can generate contextually relevant
facts (i.e., assertions) about a procedure, and train a model which selects facts that
are necessary to accomplish a goal and translates these into a procedural step.

1 Introduction

How-to questions (or questions in which a user seeks help on a procedure) account for a significant
portion of the web queries (1). Although many people seek answers to these procedural questions,
most people find reading instructions to be cognitively demanding and prefer to be guided through
procedures by others (2). This is not a scalable strategy, as it requires another person to be present
and informed about the procedure at all times. Conversational agents offer a possibility to answer
such queries for procedures on a large scale, particularly because of their widespread adoption.

However, popular modern assistants (e.g., Siri, Google, and Alexa) handle just a small fraction of
these procedures, such as cooking, or those that would fall under a brief web answer that might be read
out loud. Additionally, the procedures that the agents can manage are almost if not directly scraped
from the web and do not account for exceptions (i.e., human error), such as miscommunications and
problems encountered while performing the procedure. To make matters worse, scraped procedures
are written to be interpreted in web pages, rather than in voice interactions (i.e., the steps may
not be conversational) which can lead to issues when reading them out loud or utilizing them in a
conversational agent.

Attempts have been made in research to develop guiding agents by either developing systems that
focus on transmitting instructions in a comprehensible manner or assuming that experts will give the
essential knowledge for systems to function (3; 4). Other types of systems have tried to do procedure
abstractions, but they use parts of the text verbatim and require external knowledge always (5; 6).
Furthermore, neither of these approaches handles exceptions in procedures.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



To power a conversational agent that can guide people on procedures, and can handle exceptions
in procedures, we present a work-in-progress system that is capable of, from a list of contextually
derived facts and a goal, select the “key” facts, order them, and convert them into a procedural
step. In contrast to other methods(7), our system leverages both neural (i.e., transformer-based large
pretrained models (8; 9) and planners (10)), and symbolic (i.e., knowledge graph (11)) components
to perform this procedural step generation.

The system that we have described thus far, which generates a set of contextual facts and a goal,
uses a neural planner along with encodings of prior history of steps, to produce an ordered set of
facts, and finally translates these with a sequence to sequence model into a procedural step, may
seem complex, however we now describe the reasoning for this. By abstracting procedures into
knowledge graphs, we are no longer tied to how they are written, or represented, this permits us to
implement an open-domain, web-powered system in which there could be a set of parsers to ingest
results from a search engine, to be able to power a conversational agent to guide people in procedures.
Apart from this disentanglement of sources, we also gain the ability to perform operations in the
abstracted, knowledge graph space. Some examples of things that we could do are: modifying the
knowledge representation (e.g., adding in facts that may be personalized to a user’s preferences),
combining knowledge representations (i.e., facts from different sources on how to perform a step),
or even combining procedures to handle exception cases. The way that we formulated our system,
it takes a goal and facts, an avenue of research that we are pursuing is actually changing the goal
halfway through and adding in a new set of facts such that it represents exceptions in a procedure.
One example is changing the goal of how to write a check to that of how to correct a check, when a
mistake is made while writing a check.

In more detail, the system that we present abstracts procedures into their essential procedural
knowledge facts (i.e., assertions) in the form of a knowledge graph. With this graph, we would
then be able to reason about the procedure and deduce a path through the graph or an ordered set
of facts that can be translated into steps. What makes this abstraction particularly interesting, is
that if an error occurs during the procedure, the abstracted knowledge can be changed or updated
to handle error-handling sub-procedures. Additionally, the paths or ordering can be recalculated to
provide alternative explanations for procedures. When leveraged with natural conversation patterns
(12), the presented system can be utilized to convey the steps in a procedure in a manner akin
to receiving assistance from a real person. In summary, we present a system that is capable of
procedure abstraction, procedural knowledge reasoning, and knowledge to step generation, allowing
conversational agents to lead individuals through procedures.

2 Related Work

There has been work on systems that to teach humans through explicit instruction. Some recent
guidance systems utilize augmented reality to highlight objects and in a user’s field of view project
instructions to guide people but require that the procedure be given in advance. This can be a problem
because procedures may change as time passes, documentation may not be available, and sometimes
they may require experts to generate these instructions. One is the Cognition-based interactive
Augmented Reality Assembly Guidance System (CARAGS) (5) and Intelligent Augmented Reality
Training for Motherboard Assembly (6). Other systems take the approach of abstracting a procedure
to guide people. One such is DESIRE (3), a system that was built by IBM to improve the handling of
"How-to" support ticket questions by building an instruction flow-graph-like structure that could be
traversed to relay a procedure through a chat-bot. Another work is Enabling Interactive Answering of
Procedural Questions (4) which presents a way of generating tree-like structures from procedural
instructions. However, these systems do not consider whenever a user runs into an issue in the
procedure and how that can be resolved, nor how to handle unregistered/new procedures, nor utilize
additional knowledge that is not found in the procedure to give helpful insight.

In addition to these guidance systems, there has been development in procedural understanding
utilizing modern language models. Explaining Action Dependencies (XPAD) (13) is a model which
tries to understand dependencies between steps and how these change the states of entities. The
system produces a state matrix for every step and a dependency graph of steps that shows which
step contributed to which change. DynaPro (14) goes one step further and incorporates a language
model to further understand how entities change through steps. These procedural understanding
projects, although promising in their capability to track states and entities, are disconnected from how

2



they could be employed in practice to help with procedure guidance. An interesting read with more
historical works and the current status of procedural understanding and reasoning can be found in (7).

3 System Overview

We now give a detailed description of the subsystems of the work-in-progress system that we are
presenting. A system overview of the can be seen in Figure 1, along with a general description of
how steps are generated. Broadly our system works by taking a set of contextual facts and a goal,
using a neural planner along with encodings of prior history of steps, to produce an ordered set of
facts which are then translated with a sequence-to-sequence model into a procedural step. We now go
into details on how specific aspects of the process are done.

Figure 1: Architecture overview of graph2step system. From left to right, the system is trained by
giving a set of contextual facts and a goal, which are embedded and passed into a neural planner
along with any prior step encodings, to produce an ordered set of facts which are then translated into
a procedural step.

3.1 Procedure Abstraction: Contextual Fact Generation

To generate contextual facts, which serve as an abstraction of our procedure, we utilize a custom
contextual commonsense (i.e., dialogue-aware) inference model similar to ParaCOMET (15). Our
model is capable of ingesting both a text and a target sentence from that text. It then infers a
commonsense assertion from that target sentence given the text context. In contrast to ParaCOMET,
our single model is trained on multiple knowledge sources (ATOMIC 2020(16), ConceptNet (17),
and GLUCOSE (18)). Our model is also trained with a mechanism called hinting, a prefix prompting
strategy that uses both hard and soft prompts(19; 20), which permits controlling the contextual
commonsense inference. An example of how hinting works, and a contextual commonsense inference
for our model, is seen in the following example:

Model Input: <story> The hockey game was tied up. The red team had the puck. They
sprinted down the ice. They cracked a shot on goal! They scored a final goal! <sentence>
They scored a final goal! (<subject>The red team scores)
Model Target/Output: The red team scores, causes or enables, they win the game

In the example, the highlighted part of the text is the hint which serves as a control signal to tell the
model to predict a fact or assertion whose subject1 is: The red team scores. Without this hint, our
model is allowed to predict about entities freely. When we perform hinted contextual commonsense
inference with our model, we can also extract keywords, nouns, entities, and others from the text,
and use these as hints to infer facts related to these. When we perform contextual commonsense

1In our work, facts are represented as tuples. They are similar to a subject, verb, object tuple, but in our case
it is subject, relation, object in which a relation can be something broader than a simple verb or verb phrase. Our
relations are derived from ATOMIC and ConceptNet relations.

3



inference on every sentence in a procedure, we get a contextualized knowledge graph of every step in
our procedure, which we can see as an abstraction of our procedure.

Commonsense information refers to the millions of basic facts and understandings possessed by most
people (21). We hypothesize that by doing contextual commonsense inference as we are doing, and
generating contextual commonsense facts, these can serve as a prior to make/help in inferences in
procedural related tasks. Some evidence of this being useful is in ProStruct (22). In this work, the
authors state that "The commonsense constraints we have used for ProPara2 are general, covering
the large variety of topics contained in ProPara[...]". With this wide coverage, we could generalize
better the ability to infer how an entity behaves in a procedure for unseen entities. One work shows
some promise of this is (24). The work builds a collection of relevant "query cases" which are "link[s
from] annotated answers to semantic interpretations (i.e. logical statements)". These query cases are
essentially mappings of text examples to semantic assertions. If the query cases give evidence of the
answer, then it is likely that the question at hand has a similar answer.

3.2 Procedure Reasoning and Generation: Step Planner and Step Generator

After generating a contextual knowledge graph of a procedure as mentioned in the prior subsection,
we then encode the tuples in this knowledge graph using either a sentence encoder model (25), or
a relational graph convolution network (RGCN) (26), and pass these on to a neural planner system
similar to that of (10), which simply rates the most useful K facts to generate a procedural step text.
With these K facts, we then pass them on to a sequence-to-sequence model, along with a sentence
encoding of the goal, and utilize a language modeling objective to force the sequence-to-sequence
model to convert the useful facts into a procedural step. We utilize the scaled encoded fact (usefulness
score multiplied by the encoded fact) as inputs directly into the sequence-to-sequence model to be
able to train end-to-end the whole system. Additionally, we utilize a step encoder, which serves as a
memory to encode the most useful K facts, to serve as a prior into the neural planner system, such
that it maintains the context of any previous steps.

3.3 Dataset

To train and eventually test our system, we scraped upwards of 93000 procedures from WikiHow(27),
which are Creative Commons licensed and useable in research, along with their sub-procedures,
requirements, warnings, among other information. We are currently working on cleaning up this
dataset to release it in future work.

4 Limitations and Future Work

Our current system is under development, but early tests have shown that the system is indeed
capable of transforming the contextual knowledge graph into procedural step text, but we have
yet to quantify how well the system performs and are working on it at the time of writing. Some
other limitations that have come up during development and are being addressed at the time of this
submission are the following. There is a computational limitation on utilizing the RGCN, such
that it requires training embeddings for every entity in the generated knowledge graphs. Further
testing is required to determine whether the RGCN embeddings perform better than simple sentence
embeddings. Additionally, the contextual graph generation is a computationally complex process
because it requires performing beam search language generation for thousands of inputs per procedure.
We are currently working on optimizing the system to work in parallel for every procedure. Another
limitation that is not currently addressed, is that of exception handling in procedures. As we mentioned
previously, by abstracting a procedure into a set of knowledge graphs, we could in theory add in
the knowledge graph of an exception solving sub-procedure as described before, but we have yet to
test this behavior. We plan on utilizing this system as part of an open-domain conversational agent
capable of guiding people in procedures.

2ProPara is a dataset designed to train and test comprehension of simple paragraphs describing processes for
the task of predicting, tracking, and answering questions about how entities change during the process(23)

4



References
[1] M. De Rijke et al., “Question answering: What’s next?” 2005.

[2] E. Eiriksdottir and R. Catrambone, “Procedural instructions, principles, and examples: How
to structure instructions for procedural tasks to enhance performance, learning, and transfer,”
Human factors, vol. 53, no. 6, pp. 749–770, 2011.

[3] A. Gupta, A. Khosla, G. Singh, and G. Dasgupta, “Mining procedures from technical support
documents,” arXiv preprint arXiv:1805.09780, 2018.

[4] A. Maitra, S. Garg, and S. Sengupta, “Enabling interactive answering of procedural questions,”
in International Conference on Applications of Natural Language to Information Systems.
Springer, 2020, pp. 73–81.

[5] X. Wang, S. Ong, and A. Y.-C. Nee, “Multi-modal augmented-reality assembly guidance based
on bare-hand interface,” Advanced Engineering Informatics, vol. 30, no. 3, pp. 406–421, 2016.

[6] G. Westerfield, A. Mitrovic, and M. Billinghurst, “Intelligent augmented reality training for
motherboard assembly,” International Journal of Artificial Intelligence in Education, vol. 25,
no. 1, pp. 157–172, 2015.

[7] L. Zhang, “Reasoning about procedures with natural language processing: A tutorial,” arXiv
preprint arXiv:2205.07455, 2022.

[8] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and
L. Zettlemoyer, “BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Computational Linguistics,
Jul. 2020, pp. 7871–7880. [Online]. Available: https://aclanthology.org/2020.acl-main.703

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online]. Available: https:
//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[10] C. Zheng and P. Kordjamshidi, “Relevant CommonSense subgraphs for “what if...” procedural
reasoning,” in Findings of the Association for Computational Linguistics: ACL 2022. Dublin,
Ireland: Association for Computational Linguistics, May 2022, pp. 1927–1933. [Online].
Available: https://aclanthology.org/2022.findings-acl.152

[11] Z. Chen, Y. Wang, B. Zhao, J. Cheng, X. Zhao, and Z. Duan, “Knowledge graph completion: A
review,” IEEE Access, vol. 8, pp. 192 435–192 456, 2020.

[12] R. J. Moore, A Natural Conversation Framework for Conversational UX Design.
Cham: Springer International Publishing, 2018, pp. 181–204. [Online]. Available:
https://doi.org/10.1007/978-3-319-95579-7_9

[13] B. Dalvi, N. Tandon, A. Bosselut, W.-t. Yih, and P. Clark, “Everything happens for a reason:
Discovering the purpose of actions in procedural text,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 4496–4505.

[14] A. Amini, A. Bosselut, B. D. Mishra, Y. Choi, and H. Hajishirzi, “Procedural reading compre-
hension with attribute-aware context flow,” arXiv preprint arXiv:2003.13878, 2020.

[15] S. Gabriel, C. Bhagavatula, V. Shwartz, R. Le Bras, M. Forbes, and Y. Choi, “Paragraph-level
commonsense transformers with recurrent memory,” in AAAI, 2021.

[16] J. D. Hwang, C. Bhagavatula, R. L. Bras, J. Da, K. Sakaguchi, A. Bosselut, and Y. Choi,
“Comet-atomic 2020: On symbolic and neural commonsense knowledge graphs,” in AAAI, 2021.

[17] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual graph of general
knowledge,” arXiv preprint arXiv:1612.03975, 2016.

5

https://aclanthology.org/2020.acl-main.703
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2022.findings-acl.152
https://doi.org/10.1007/978-3-319-95579-7_9


[18] N. Mostafazadeh, A. Kalyanpur, L. Moon, D. Buchanan, L. Berkowitz, O. Biran, and
J. Chu-Carroll, “Glucose: Generalized and contextualized story explanations,” arXiv preprint
arXiv:2009.07758, 2020.

[19] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” arXiv
preprint arXiv:2101.00190, 2021.

[20] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict:
A systematic survey of prompting methods in natural language processing,” arXiv preprint
arXiv:2107.13586, 2021.

[21] H. Liu and P. Singh, “Conceptnet—a practical commonsense reasoning tool-kit,” BT technology
journal, vol. 22, no. 4, pp. 211–226, 2004.

[22] N. Tandon, B. D. Mishra, J. Grus, W.-t. Yih, A. Bosselut, and P. Clark, “Reasoning about actions
and state changes by injecting commonsense knowledge,” arXiv preprint arXiv:1808.10012,
2018.

[23] B. D. Mishra, L. Huang, N. Tandon, W.-t. Yih, and P. Clark, “Tracking state changes in
procedural text: a challenge dataset and models for process paragraph comprehension,” arXiv
preprint arXiv:1805.06975, 2018.

[24] D. Ribeiro, T. Hinrichs, M. Crouse, K. Forbus, M. Chang, and M. Witbrock, “Predicting state
changes in procedural text using analogical question answering,” in 7th Annual Conference on
Advances in Cognitive Systems, 2019.

[25] N. Reimers and I. Gurevych, “Making monolingual sentence embeddings multilingual using
knowledge distillation,” in Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 11 2020. [Online].
Available: https://arxiv.org/abs/2004.09813

[26] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling, “Modeling
relational data with graph convolutional networks,” in European semantic web conference.
Springer, 2018, pp. 593–607.

[27] “Wikihow.” [Online]. Available: https://www.wikihow.com/Main-Page

6

https://arxiv.org/abs/2004.09813
https://www.wikihow.com/Main-Page

	Introduction
	Related Work
	System Overview
	Procedure Abstraction: Contextual Fact Generation
	Procedure Reasoning and Generation: Step Planner and Step Generator
	Dataset

	Limitations and Future Work

