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Abstract

Direct Sampling is an algorithm that can generate synthetic data using only one
training image and a set of conditioning points. This algorithm implicitly learns
the conditional distribution of the probable values the data could take given a set
of conditioning points and the training image. This algorithm does not learn an
internal state, like parametric Machine Learning algorithms, but instead, it contains
a pattern-matching algorithm that implicitly learns such conditional distribution.
Thus, it is a non-parametric Machine learning algorithm that resembles the KNN
approach. In this work, we explore the application of Direct Sampling for gen-
erating extreme precipitation events, which are precipitation weather fields with
out-of-sample precipitation values. To this end, we propose to conditioning Direct
Sampling not only in the training image and the conditioning points but also in a
set of control points and a return precipitation level map to guide the out-of-sample
precipitation value generation. We validate our approach with statistical metrics
and connectivity metrics.

1 Introduction

Extreme weather analysis is important due to the effects that extreme weather events could cause on
the economy, society, and the environment. Thus, there is a necessity to have tools for supporting
the risk analysis of downstream tasks by considering extreme weather scenarios. In this study, we
investigate the use of the generation of extreme precipitation events via the use of the Direct Sampling
Algorithm, which is an algorithm that implicitely learns the conditional distribution of the probable
values the data could take given a set of conditioning points and only one training image. The
main advantage of this approach is that we do not have to rely on a big dataset for constructing a
generative model, instead, we use a reference training image for constructing the simulations. The
Direct Sampling algorithm can be understood as a non-parametric machine learning algorithm —
i.e., differently that parametric machine learning algorithms that learn an internal state of the model
(the model’s parameters) from data, and then discard the data and only rely on the learned model
parameters to do inference and generation (e.g. neural networks, linear regression, etc) — it is a
model that does not have an internal state but it has an internal pattern-matching algorithm that helps
the generation process, thus it strongly rely on the training image for generating new samples. It
resembles the KNN approach but for data generation. In order to produce coherent (out-of-sample)
extreme precipitation weather fields with Direct Sampling, we propose to use a set of control points
whose locations are arbitrarily chosen and whose values are correlated with return precipitation level
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maps, i.e, a map of extreme precipitation values based on the analysis provided by Extreme Value
Theory. We validate our results with a set of statistical metrics and connectivity metrics.

1.1 Direct Sampling

Direct Sampling is an algorithm that arose from the Multi-point Geostatistics community [Mariethoz
et al., 2010, Mariethoz and Caers, 2014], and whose main use is to provide statistically coherent
simulations with a structure mimicking the one provided by a training image. Traditional applications
of direct sampling are those that require simulations coherent with a set of measurements, and
coherent with the physics provided by the training image. In the weather domain, some applications
of Direct Sampling are on conditional stochastic rainfall [Wojcik et al., 2009], downscaling [Jha
et al., 2013, 2015], resampling extremes [Opitz et al., 2021], rainfall series generation [Benoit and
Mariethoz, 2017, Oriani et al., 2014, 2018], conditional weather fields [Oriani et al., 2017].

The Direct Sampling algorithm begins by considering a Training Image (TI) which is a multi-
dimensional signal providing single or multivariable information. Thus, given a TI and a simulation
grid (SG), the algorithm starts by assigning conditional data points to the SG if any. The simulated
value for a random location x in the SG is computed by doing pattern matching between the data
event for x and all the similar data events in the TI. A data event for x is the set of n already simulated
nodes around x and it is denoted by dn(x, L) = {Z(x+ h1), . . . , Z(x+ hn)}, where L is a set of
lag vectors {h1, . . . ,hn} defining a neibourghood around x, and Z(x) is the simulated value for
location x. The pattern matching algorithm uses a distance function between the TI and SG data
events, i.e., D(dn(x, L), dn(y, L)), where y is a random location in the TI. Once a match is found,
the value of y in the TI is assigned to location x in the SG. The algorithm’s stop criterion is to
threshold D to a small value t or assign the lowest D value if D ≤ t is not satisfied.

An interesting property of this algorithm is that the pattern matching between the TI and SG data
events looks for a very diverse set of structures at different scales — it scrutinizes for a myriad of
patterns of different sizes without using predefined templates. Also, it allows the use of continuous
and discrete variables, co-simulation, conditioning points, multi-variables, and parallel algorithms.
Furthermore, the quality of the simulations depends on the quality of the TI and the parameter
settings such as the distance between data events, threshold distance value, and data event size. All
of that will require a first round of sensitivity analysis to calibrate the algorithm with the best set of
parameters. Unfortunately, there is a positive correlation between the best parameter configuration
and a high computational cost, however, some solutions based on GPU and parallel implementations
exist [Huang et al., 2013, Cui et al., 2021].

1.2 Direct sampling on a target weather field conditioned on a return level map and control
points

One way to generate extreme weather fields is by conditioning the Direct Sampling on a set of control
points defining the locations for generating extreme weather values. In this sense, we set the control
points values to be defined from the return level map values associated to a given return period.
Section 2.3.1 describes how the return level map is estimated. Main advantages of this approach is
that we don’t need to perform quantile mappings or assume any parametric distributions and, the use
of control points and return level maps to condition the generation of extreme precipitation weather
values in areas of interest can be very valuable for downstream applications, e.g., flood risk analisys,
risk management for disaster countermeasures, etc. We propose the following procedure:

1. Identify a target weather field W′ in the dataset Wt, (t = 1, . . . , T ) with the best raking
based on some criteria.

2. Set the weather field W′ as a training image.

3. Set the conditioning data matrix matrix Ĉ to the weather values of random locations
within the region of interest that we do not want to generate extreme precipitation, i.e.,
{Ĉi = W′

i}i∈Î and {Ĉi = φ}i/∈Î , where Î is an index set of random locations in the spatial
domain of interest.

4. Set the control points data matrix C to (out-of-sample) extreme weather values at locations
where we want to generate extreme precipitation events. i.e., {Ci = fi}i∈I and {Ci =
φ}i/∈I , where f is a random process depending on a provided return precipitation level map
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M and a specific location, that is, fi = f(i,M) and I is an index set of locations in the
spatial domain of interest where we want to generate extreme weather. We call all the points
Ci 6= φ as control points.

5. Assign to the simulation grid S all the points in the conditioning and the control points data
matrices, i.e, {Si = Ĉi}i∈Î and {Si = Ci}i∈I

6. Run the Direct Sampling algorithm with Training Image W′ and Simulation grid S, and
appropriate parameters as usual but if in the process of simulating a location x in the
simulation grid S it is found a value in the data event belonging to the simulation grid greater
than the maximum value found in the training image, i.e., max dn(x, L) > maxW′ , do
the following update: Sx = W′

y − dn(y, L) + dn(x, L), where W′
y is a random point in

the training image located at y, the overline notation denotes de average and dn(y, L) and
dn(x, L) are the data events of the training image W′ and simulation grid S, respectively.

Observe that the main purpose of conditioning data matrix Ĉ is to guarantee spatial coherence and
honor some values of the training image data. Also, the locations in Ĉ and C can be selected by
users or by analyzing some precipitation statistics within the region of interest. The update for Sx

mentioned in step six, was mentioned in [Mariethoz et al., 2010] in the context of non-stationary
distances. Figure 1 depicts the proposed pipeline showcasing the use of a 100-year return precipitation
level map, a target weather field, a region of interest where extreme values will be generated, the
control and the conditional points, and the generated weather filed with the extreme precipitation
event.

Figure 1: Generation of an extreme precipitation event using Direct sampling conditioned on a return
precipitation level map via control points. The algorithm selects a target weather field as a training
image and receives two external inputs: a return precipitation level map and a set of control points
within a region of interest. The control points couple the locations in the target weather field with
values from the return precipitation level map. Further, a set of conditioning points are used as a way
to hold the non-stationarity and connectivity properties from the original target weather field. Direct
Sampling uses such information to generate a simulation of an extreme precipitation weather field.

2 Experimental Evaluation

2.1 Dataset and region of interest

We used the IMERG dataset [Huffman et al., 2019], which contains daily precipitation values in
mm and a spatial resolution of 0.1◦ × 0.1◦, corresponding to approximately to 10km × 10km. We
selected the precipitation data from 2001 to 2020 within a bounding box defined by the coordinates
16.2 ◦ N, 73.9◦ E, 22.2◦ N, 79.9◦ E, which roughly correspond to 360000 km2 and contains 3600
latitude and longitude pairs. The region of interest correspond to the Maharastra state, India.

2.2 Metrics

We used a series of quantitative metrics to validate how well the simulations are reproducing the
structural and statistical properties of the Training Images. We employed the following metrics to
quantify the reproduction of statistical properties:

• Quantile-quantile plot between the pixel values of the training image and the simulation

• Comparison between the empirical cumulative distribution functions (eCDF) between the
pixel values of the training image and the simulation
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• Comparison between variograms estimated from the training image and the simulation

Figure 2: The quantile-quantile, eCDF, and Variogram metrics show how the simulation preserves
some statistical properties of the training image: the distribution of pixel values and the variation of
the standard deviation as a function of a lag.

Figure 2 shows from left to right a training image W , the conditioning points C, the simulation grid
S and the quantile-quantile, eCDF, and Variogram plots. For this simulation, those metrics agree that
the simulations preserve the statistical properties of the training image’s pixel values.

We used the following metrics to quantify the reproduction of connectivity properties:

• Two-point probability function [Renard and Allard, 2013, Torquato et al., 1988, Torquato
and Haslach Jr, 2002]— It assumes that the input is a binary image I, and it measures the
probability that, given a lag h, two pixels located at x and x + h contain color one, i.e.,
S2(h) = P{I(x) = 1, I(x + h) = 1}, observe that if h = 0 then S2(h) equals to the
fraction of pixels within the image with color one, i.e., S2(h) = E{I(x = 1)} = ϕ, on the
other extreme, if x and x+ h are uncorrelated, it assumes that both points have the same
probability ϕ, thus S2(h) = ϕ2

• Two-point connectivity function [Renard and Allard, 2013, Torquato et al., 1988, Torquato
and Haslach Jr, 2002] — It assumes that the input is an image containing clusters, and
given a lag h, it measures the probability that two pixels located at x and x + h pixels
are connected, i.e., they belong to the same cluster C(x) = C(x + h) 6= 0. That is,
C2(h) = P{C(x) = C(x+ h) 6= 0}. Observe that if h = 0 then C2(h) = ϕ by the same
arguments as beforementioned, on the other extreme, if x and x+ h are uncorrelated, they
are not connected, i.e., C2(h) = 0

Figure 3, shows the connectivity metrics: the two-point probability and connectivity functions. The
first row from left to right shows the results of using the two-point probability function S2 for the
training image and simulation from Figure 2. In this case, the input to the procedure is a binary
image where all the points of interest are labeled as one and zero otherwise. We used three criteria
for creating binary images depending on the quantile range of pixel values, for instance, the first
criteria aim to analyze if the simulation is reproducing the connectivity properties of the training
image in regions with high precipitation values, in this case, we binarize both the training image
and the simulation such the respective binary images has a value of one in the locations with high
precipitation values and zero otherwise. The first row of Figure 3 shows this first criterion where we
label the binary images as one in regions where the precipitation values exceed the 0.9 quantiles of
pixel values. The other two criteria were to analyze if the simulation is reproducing the connectivity
properties of the training image in the middle and lower precipitation values, respectively. In those
cases, we provide binary images with label one in regions within 0.1 and 0.9 quantiles of pixel
values (middle case) and label one in regions with less than 0.1 quantiles of pixel values (lower case).
The first row of Figure 3 also shows the two-probability functions for the training image and the
simulation labeled as S2(TI) and S2(Sim), respectively. Observe that the lag parameter h varies
from 0 to 15 pixels, which corresponds to 0.1◦ (10km approximately). We also show the difference :
S2(TI)−S2(Sim). Furthermore, we show for completeness the profile average between the training
image and the simulation, which we computed by selecting the S2 values in the X-axis, Y-axis,
XY-axis, and YX-axis, starting from the center coordinates, and averaging it out.

The second row from Figure 3 shows the results for the two-point connectivity function C2 for the
training image and simulation from Figure 2 labeled as C2(TI) and S2(Sim), respectively. The
input to this procedure is an image with clusters labels in the region of interest for the analysis (A
binary image describes the region of interest, the computation was likewise the S2 metric case). The
figure also shows the difference image: C2(TI)− S2(Sim) and the profile average.
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Figure 3: The two-point probability and conectivity metrics show how the simulation preserves some
structural properties of the training image.

Figure 4: Distribution of the extreme daily precipitation grouped by month in the region under
analysis, for the period 2001-2020.

For this simulation, those metrics agree that the simulation preserves the connectivity properties
found in the training image.

2.3 Generation of precipitation weather fields with extreme events

We generated in this experiment precipitation weather fields with extreme events. We also estimated
the return precipitation level maps for 100, 250, and 500-year return period events. Figure 4 shows
the empirical distribution of daily precipitation values above the 99.9 percentile and grouped by
month for the period 2001-2020 — observe that historical extreme precipitation values surpass the
400 mm/day for July and August months, which correspond to the Moonson period in central India.

2.3.1 Return precipitation level map estimation

The return period can be seen as a risk measure [Brunner et al., 2016] widely adopted in the climate
domain because it expresses the likelihood of extreme events and consequently the likelihood of
failures and large losses. The mth return period estimates the magnitude of the phenomena whose
probability of exceedance in one year is equal to 1

m [Vogel and Castellarin, 2017].

For safety and structural analysis purposes, frequently we should rely on events whose return
periods are larger than the period of available data, making the empirical estimation of such events
impractical. Extreme Value Theory [De Haan and Ferreira, 2007] provides the theoretical statistical
tools to perform such extrapolation to calculate higher quantiles based on a limited set of samples.
Our approach is based on Extreme Value Theory to generate the return levels maps of 100, 250, and
500 years return periods, as we had only 20 years of available data.
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We opted for the block-maxima sampling approach, collecting the most extreme precipitation events
of each year and then using these samples to calibrate the parameters of a Generalized Extreme
Value distribution (GEV) with the Maximum Likelihood method. Figure 5 shows the resulting return
precipitation level maps for the region of interest for 100, 250, and 500-year return period events.

Figure 5: Return precipitation level maps for 100, 250 and 500 years of return periods.

2.3.2 Conditioning the Direct Sampling on a return precipitation level map and control
points

In this section, we show the use of the Direct Sampling conditioned on control points and return
level maps as described in Section 1.2 to produce extreme precipitation weather fields. Figure 6
shows the generation of extreme precipitation weather fields: the first-left column of images are the
target weather fields, in this case, we arbitrarily selected those figures. Each row of Figure 6 contains
the results of conditioning the Direct Sampling on the three precipitation level maps — 100, 250,
and 500 -year return precipitation levels — depicted in Figure 5. The yellow areas in the second,
fourth, and sixth columns of images depict the ROIs: a rectangle, two rectangles, and a more complex
shape estimated by selecting the areas from the original target image with more than 0.9-quantiles
of precipitation values. Each ROI contains a set of control points, in practice, users can define
arbitrary locations for those control points within the ROI. In the case of Figure 6 the control points
are randomly located. Also, the value that each control point could take is defined by fi (Section
1.2). In this experiment, we defined fi by sampling a value uniformly distributed from the interval
given by the maximum value presented in the training image, and the return precipitation level map
value for the location of the control point. Of course, other configurations are possible for instance
sampling from a normal with a location parameter given by the mean of the beforementioned interval,
and a standard deviation related to the full width, and half maximum of the normal distribution, i.e.,
σ = 2

√
2 log 2, or even control points can take directly its values from the return precipitation level

map. Those cases are depicted in Figure 7, the first row shows the case of fi defined by sampling
from a normal distribution, and the second row, the case where fi takes the values directly from the
return precipitation level map.

Observe that the statistical and structural properties of the resulting simulation in the region outside
the ROI will be correlated with those in the training image. To analyze how the extreme generation
alters the statistical and connectivity metrics of the original training image, we show in Figure 8 the
results of comparing one-hundred simulations vs. the original statistical and connectivity properties
of the training image. The qq-plot and eCDF metrics inform how the distribution of precipitation
values is shifted upwards, reflecting the fact that the simulation contains out-of-sample precipitation
values. The variogram shows an increase in the standard deviation as a function of lag, this alteration
is due to the ROI and the extreme precipitation values generated. The connectivity metrics show that
the connectivity properties of the middle precipitation values are well preserved by the simulation. It
shows an increase in the connectivity metric values for high precipitation values, i.e., the probability
of having two random points within the area of high precipitation is bigger, and there is a decrease in
the probability of connectivity of low precipitation values, that makes sense because the algorithm is
increasing the precipitation values within the ROI. We show also the mean and the standard deviation
of the simulations on the top row of the Figure.

6



Figure 6: Extreme precipitation generation using the Direct Sampling and control points located in
the yellow area of the ROI (region of interest) image, conditioned on a 100-year return precipitation
level map.

Figure 7: Extreme precipitation generation using the Direct Sampling and control points taking its
values from a normal distribution or directly from the return precipitation level map

3 Conclusions

We presented how the Direct Sampling algorithm — an algorithm for data generation that can be
cast as a non-parametric ML generative model — can be used for extreme precipitation generation.
For this, we condition the generation process of Direct Sampling on a set of control points and
return precipitation level maps. The set of control points can be defined arbitrarily by users or
applications, and the return precipitation level map was estimated using Extreme Value Theory. We
validated our approach with the IMERG precipitation dataset and a set of statistical (quantile-quantile,
empirical cumulative distribution function, and variogram) and connectivity (two-point probability
and connectivity)metrics. Future work includes solving the problem of extreme weather generation
but including several weather variables at the same time and embedding the time as an additional
variable.
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