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Abstract

Modern high-scoring models of vision in the brain score competition do not stem1

from Vision Transformers. However, in this paper, we provide evidence against2

the unexpected trend of Vision Transformers (ViT) being not perceptually aligned3

with human visual representations by showing how a dual-stream Transformer, a4

CrossViT a la Chen et al. (2021), under a joint rotationally-invariant and adver-5

sarial optimization procedure yields 2nd place in the aggregate Brain-Score 20226

competition (Schrimpf et al., 2020b) averaged across all visual categories, and at7

the time of the competition held 1st place for the highest explainable variance of8

area V4. In addition, our current Transformer-based model also achieves greater9

explainable variance for areas V4, IT and Behavior than a biologically-inspired10

CNN (ResNet50) that integrates a frontal V1-like computation module (Dapello11

et al., 2020). To assess the contribution of the optimization scheme with respect12

to the CrossViT architecture, we perform several additional experiments on differ-13

ently optimized CrossViT’s regarding adversarial robustness, common corruption14

benchmarks, mid-ventral stimuli interpretation and feature inversion. Against our15

initial expectations, our family of results provides tentative support for an “All16

roads lead to Rome” argument enforced via a joint optimization rule even for non17

biologically-motivated models of vision such as Vision Transformers.18

1 Introduction19

Research and design of modern deep learning and computer vision systems such as the NeoCogni-20

tron (Fukushima & Miyake, 1982), H-Max Model (Serre et al., 2005) and classical CNNs (LeCun21

et al., 2015) have often stemmed from breakthroughs in visual neuroscience dating from Kuffler22

(1953) and Hubel & Wiesel (1962). Today, research in neuroscience passes through a phase of23

symbiotic development where several models of artificial visual computation (mainly deep neural24

networks), may inform visual neuroscience (Richards et al., 2019) shedding light on puzzles of25

development (Lindsey et al., 2019), physiology (Dapello et al., 2020), representation (Jagadeesh &26

Gardner, 2022) and perception (Harrington & Deza, 2022).27

Of particular recent interest is the development of Vision Transformers (Dosovitskiy et al., 2021). A28

model that originally generated several great breakthroughs in natural language processing (Vaswani29

et al., 2017), and that has now slowly begun to dominate the field of machine visual computation.30

However, in computer vision, we still do not understand why Vision Transformers perform so well31

when adapted to the visual domain (Bhojanapalli et al., 2021). Is this new excel in performance32

due to their self-attention mechanism; a relaxation of their weight-sharing constraint? Their greater33

number of parameters? Their optimization procedure? Or perhaps a combination of all these factors?34

Naturally, given the uncertainty of the models’ explainability, their use has been carefully limited as35

a model of visual computation in biological (human) vision.36
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Figure 1: Diagram of CrossViT-18† (Chen et al., 2021) architecture & specification of selected layers
for the V1, V2, V4, IT brain areas and the behavioral benchmark. Our Brain-Score 2022 competition
entry was a variation of this model where the architecture is cloned, and the network is adversarially
trained with hard data-augmentation rotations starting from a pre-trained ImageNet model.

This is a double-edged sword: On one hand, perceptual psychologists still rely heavily on relatively37

low-scoring ImageNet-based accuracy models such as AlexNet, ResNet & VGG despite their limited38

degree of biological plausibility (though some operations are preserved, eg. local filtering, half-wave39

rectification, pooling). On the other hand, a new breed of models such as Vision Transformers has40

surged, but their somewhat non-biologically inspired computations have no straightforward mapping41

to approximate the structure of the human ventral stream1 – thus discarding them as serious models of42

the human visual system. Alas, even if computer vision scientists may want to remain on the sidelines43

of the usefulness of a biological/non-biological plausibility debate, the reality is that computer vision44

systems are still far from perfect. The existence of Adversarial examples, both artificial (Goodfellow45

et al., 2015; Szegedy et al., 2014) and natural (Hendrycks et al., 2021b), reflects that there is still46

a long way to go to close the human-machine perceptual alignment gap (Geirhos et al., 2021).47

Beyond the theoretical milestone of closing this gap, this will be beneficial for automated systems in48

radiology (Hosny et al., 2018), surveillance (Deza et al., 2019), driving (Huang & Chen, 2020), and49

art (Ramesh et al., 2022).50

These two lines of thought bring us to an interesting question that was one of the motivations of this51

paper: “Are Vision Transformers good models of the human ventral stream?” Our approach to answer52

this question will rely on using the Brain-Score platform (Schrimpf et al., 2020a; BrainScore-Org,53

2022) and participating in their first yearly competition with a Transformer-based model. This54

platform quantifies the similarity via bounded [0,1] scores of responses between a computer model55

and a set of non-human primates. Here the ground truth is collected via neurophysiological recordings56

and/or behavioral outputs when primates are performing psychophysical tasks, and the scores are57

computed by some derivation of Representational Similarity Analysis (Kriegeskorte et al., 2008)58

when pitted against artificial neural network activations of modern computer vision models.59

Altogether, if we find that a specific model yields high Brain-Scores, this may suggest that such flavor60

of Vision Transformers-based models obey a necessary but not sufficient condition of biological61

plausibility – or at least relatively so with respect to their Convolutional Neural Network (CNN)62

counter-parts. As it turns out, we will find out that the answer to the previously posed question63

is complex, and depends heavily on how the artificial model is optimized (trained). Thus the64

main contribution of this paper is to understand why this particular Transformer-based model when65

optimized under certain conditions performs vastly better in the Brain-Score competition achieving66

1Even at their start, the patch embedding operation is not obviously mappable to retinal, LGN, or V1-like
primate computation.

2

https://www.brain-score.org/


Brain-Score ρ-Hierarchy
Rank Model ID # Description Avg V1 V2 V4 IT Behavior

1 1033 Bag of Tricks (Riedel, 2022) [New SOTA] 0.515 0.568 0.360 0.481 0.514 0.652 -0.2
2 991 CrossViT-18† (Adv + Rot) [Ours] 0.488 0.493 0.342 0.514 0.531 0.562 +0.8
3 1044 Gated Recurrence (Azeglio et al., 2022) 0.463 0.509 0.303 0.482 0.467 0.554 -0.4
4 896 N/A 0.456 0.538 0.336 0.485 0.459 0.461 -0.4
5 1031 N/A 0.453 0.539 0.332 0.475 0.510 0.410 -0.2

Table 1: Ranking of all entries in the Brain-Score 2022 competition as of February 28th, 2022. Scores
in blue indicate world record (highest of all models at the time of the competition), while scores in
bold display the highest scores of competing entries. Column ρ-Hierarchy indicates the Spearman
rank correlation between per-Area Brain-Score and Depth of Visual Area (V1 → IT).

SOTA in such benchmark, and not to develop another competitive/SOTA model for ImageNet (which67

has shown to not be a good target Beyer et al. (2020)). The authors firmly believe that the former goal68

tackled in the paper is much under-explored compared to the latter, and is also of great importance to69

the intersection of the visual neuroscience and machine learning communities.70

2 Optimizing a CrossViT for the Brain-Score Competition71

Now, we discuss an interesting finding, where amidst the constant debate of the biological plausibility72

of Vision Transformers – which have been deemed less biologically plausible than convolutional73

neural networks 2, though also see Conwell et al. (2021)) –, we find that when these Transformers are74

optimized under certain conditions, they may achieve high explainable variance with regards to many75

areas in primate vision, and surprisingly the highest score to date at the time of the competition for76

explainable variance in area V4, that still remains a mystery in visual neuroscience (see Pasupathy77

et al. (2020) for a review). Our final model and highest scoring model was based on several insights:78

Adversarial-Training: Work by Santurkar et al. (2019); Engstrom et al. (2019b); Dapello et al.79

(2020), has shown that convolutional neural networks trained adversarially3 yield human perceptually-80

aligned distortions when attacked. This is an interesting finding, that perhaps extends to vision81

transformers, but has never been qualitatively tested before though recent works – including this82

one (See Figure 4) – have started to investigate in this direction (Tuli et al., 2021; Caro et al., 2020).83

Thus we projected that once we picked a specific vision transformer architecture, we would train it84

adversarially.85

Multi-Resolution: Pyramid approaches (Burt & Adelson, 1987; Simoncelli & Freeman, 1995; Heeger86

& Bergen, 1995) have been shown to correlate highly with good models of Brain-Scores (Marques87

et al., 2021). We devised that our Transformer had to incorporate this type of processing either88

implicitly or explicitly in its architecture.89

Rotation Invariance: Object identification is generally rotationally invariant (depending on the90

category; e.g. not the case for faces (Kanwisher et al., 1998)). So we implicitly trained our model to91

take in different rotated object samples via hard rotation-based data augmentation. This procedure is92

different from pioneering work of Ecker et al. (2019) which explicitly added rotation equivariance to93

a convolutional neural network.94

Localized texture-based computation: Despite the emergence of a global texture-bias in object95

recognition when training Deep Neural Networks (Geirhos et al., 2019) – object recognition is a96

compositional process (Brendel & Bethge, 2019; Deza et al., 2020). Recently, works in neuroscience97

have also suggested that local texture computation is perhaps pivotal for object recognition to either98

create an ideal basis set from which to represent objects (Long et al., 2018; Jagadeesh & Gardner,99

2022) and/or encode robust representations (Harrington & Deza, 2022).100

After searching for several models in the computer vision literature that resemble a Transformer101

model that ticks all the boxes above, we opted for a CrossViT-18† (that includes multi-resolution102

+ local texture-based computation) that was trained with rotation-based augmentations and also103

2Discussed in: URL_1 URL_2
3Adversarial training is the process in which an image in the training distribution of a network is perturbed

adversarially (e.g. via PGD); the perturbed image is re-labeled to its original non-perturbed class, and the
network is optimized via Empirical Risk Minimization (Madry et al., 2018).
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ImageNet (↑) Brain-Score (↑)
Model ID # Description Validation Accuracy (%) Avg V1 V2 V4 IT Behavior

N/A Pixels (Baseline) N/A 0.053 0.158 0.003 0.048 0.035 0.020
N/A AlexNet (Baseline) 63.3 0.424 0.508 0.353 0.443 0.447 0.370
N/A VOneResNet50-robust (SOTA) 71.7 0.492 0.531 0.391 0.471 0.522 0.545
991 CrossViT-18† (Adv + Rot) 73.53 0.488 0.493 0.342 0.514 0.531 0.562

1084 CrossViT-18† (Adv) 64.60 0.462 0.497 0.343 0.508 0.519 0.441
1095 CrossViT-18† (Rot) 79.22 0.458 0.458 0.288 0.495 0.503 0.547
1057 CrossViT-18† 83.05 0.442 0.473 0.274 0.478 0.484 0.500

Table 2: A list of different models submitted to the Brain-Score 2022 competition. Scores in bold
indicate the highest performing model per column. Scores in blue indicate world record (highest of
all models at the time of the competition). All CrossViT-18† entries in the table are ours.

adversarial training (See Appendix A.3 for exact training details, our best model also used p = 0.25104

grayscale augmentation, though this contribution to model Brain-Score is minimal).105

Results: Our best performing model #991 achieved 2nd place in the overall Brain-Score 2022106

competition (Schrimpf et al., 2020b)) as shown in Table 1. At the time of submission, it holds the107

first place for the highest explainable variance of area V4 and the second highest score in the IT area.108

Our model also currently ranks 6th across all Brain-Score submitted models as shown on the main109

brain-score website (including those outside the competition and since the start of the platform’s110

conception, totaling 216). A general schematic of how Brain-Scores are calculated can be seen in111

Figure 2.112
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Figure 2: A schematic of how brain-score is cal-
culated as similarity metrics obtained from neural
responses and model activations.

Additionally, in comparison with the113

biologically-inspired model (VOneRes-114

Net50+ Adv. training), our model achieves115

greater scores in the IT, V4 and Behavioral116

benchmarks. Critically we notice that our117

best-performing model (#991) has a positive118

ρ-Hierarchy coefficient4 compared to the119

new state of the art model (#1033) and other120

remaining entries, where this coefficient is121

negative. This was an unexpected result that122

we found as most biologically-driven models123

obtain higher Brain-Scores at the initial stages124

of the visual hierarchy (V1) (Dapello et al.,125

2020), and these scores decrease as a function126

of hierarchy with generally worse Brain-Scores127

in the final stages (e.g. IT).128

We also investigated the differential effects of rotation invariance and adversarial training used on129

top of a pretrained CrossViT-18† as shown in Table 2. We observed that each step independently130

helps to improve the overall Brain-Score, quite ironically at the expense of ImageNet Validation131

accuracy (Zhang et al., 2019). Interestingly, when both methods are combined (Adversarial training132

and rotation invariance), the model outperforms the baseline behavioral score by a large margin133

(+0.062), the IT score by (+0.047), the V4 score by (+0.036), the V2 score by (+0.068), and the V1134

score by (+0.020). Finally, our best model also retains a great standard accuracy at ImageNet from its135

pretrained version albeit a 10% drop, yet the performance on ImageNet Validation Accuracy of our136

model (73.53%) is still greater than a more biologically principled model such as the adversarially137

trained VOneResNet-50 (71.7%) (Dapello et al., 2020).138

3 Assessment of CrossViT-18†-based models139

As we have seen that the optimization procedure heavily influences the brain-score of each CrossViT-140

18† model, and thus its alignment to human vision (at a coarse level accepting the premise of the141

Brain-Score competition). We will now explore how different variations of such CrossViT’s change as142

a function of their training procedure, and thus their learned representations via a suite of experiments143

4ρ-Hierarchy coefficient: We define this as the Spearman rank correlation between the Brain-Scores of areas
[V1,V2,V4,IT] with hierarchy: [1,2,3,4]

4
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Figure 3: An extended demonstration of our winning model (CrossViT-18† [Adv. Training + Rot.
invariance]) where a targeted attack is done for 3 images and the resulting stimuli is perceptu-
ally aligned with a human judgment of the fooled class. To our knowledge, this is the first time
perceptually-aligned adversarially attacks have been shown to emerge in Transformer-based models.

that are more classical in computer vision. Additional experiments with CrossViT-18†-based models144

can be seen at Appendix B.145

Figure 4: A qualitative demonstration of the
human-machine perceptual alignment of the
CrossViT-18† via the effects of adversarial per-
turbations. As the average Brain-Score increases
in our system, the distortions seem to fool a human
as well.

One of our most interesting qualitative results is146

that the direction of the adversarial attack made147

on our highest performing model resembles a148

distortion class that seems to fool a human ob-149

server too (Figures 4, 3). Alas, while the ad-150

versarial attack can be conceived as a type of151

eigendistortion as in Berardino et al. (2017) we152

find that the Brain-Score optimized Transformer153

models are more perceptually aligned to human154

observers when judging distorted stimuli. Sim-155

ilar results were previously found by Santurkar156

et al. (2019) with ResNets, though there has not157

been any rigorous & unlimited time verification158

of this phenomena in humans similar to the work159

of Elsayed et al. (2018). Experimental details160

can be found in Appendix C161

We also applied PGD attacks on our162

winning entry model (Adversarial Train-163

ing + Rot. Invariance) on range ϵ ∈164

{1/255, 2/255, 4/255, 6/255, 8/255, 10/255}165

and step-size = 2.5
#PGDiterations

as in the166

robustness Python library (Engstrom et al.,167

2019a) , in addition to three other controls:168

Adv. Training, Rotational Invariance, and a pretrained CrossViT, to evaluate how their adversarial169

robustness would change as a function of this particular distortion class. When doing this evaluation170

we observe in Figure 5 that Adversarially trained models are more robust to PGD attacks (three-step171

size flavors: 1 (FGSM), 10 & 20). One may be tempted to say that this is “expected” as the172

adversarially trained networks would be more robust, but the type of adversarial attack on which173

they are trained is different (FGSM as part of FAT (Wong et al., 2020) during training; and PGD174

at testing). Even if FGSM can be interpreted as a 1 step PGD attack, it is not obvious that this175

type of generalization would occur. In fact, it is of particular interest that the Adversarially trained176

CrossViT-18† with “fast adversarial training” (FAT) shows greater robustness to PGD 1 step attacks177

when the epsilon value used at testing time is very close to the values used at training (See Figure 5a).178

Naturally, for PGD-based attacks where the step size is greater (10 and 20; Figs. 5b,5c), our winning179

entry model achieves greater robustness against all other trained CrossViT’s independent of the ϵ180

values.181
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(a) PGD attack - 1 step
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(b) PGD attack - 10 step
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(c) PGD attack - 20 step

Figure 5: A suite of multiple steps [1,10,20] PGD-based adversarial attacks on clones of CrossViT-18†
models that were optimized differently. Here we see that our winning entry (Adversarial training
+ Rotation Invariance) shows greater robustness (adversarial accuracy) than all other models as the
number of steps of PGD-based attacks increases only for big step sizes of 10 & 20.

3.1 Feature Inversion182

The last assessment we provided was inspired by feature inversion models that are a window to the183

representational soul of each model (Mahendran & Vedaldi, 2015). Oftentimes, models that are184

aligned with human visual perception in terms of their inductive biases and priors will show renderings185

that are very similar to the original image even when initialized from a noise image (Feather et al.,186

2019). We use the list of stimuli from Harrington & Deza (2022) to compare how several of these187

stimuli look like when they are rendered from the penultimate layer of a pretrained and our winning188

entry CrossViT-based model. A collection of synthesized images can be seen in Figure 6.189

Even when these images are rendered starting from different noise images, Transformer-based models190

are remarkably good at recovering the structure of these images. This hints at a coherence with the191

results of Tuli et al. (2021) who have argued that Transformer-based models have a stronger shape192

bias than most CNN’s (Geirhos et al., 2019). We think this is due to their initial patch-embedding193

stage that preserves the visual organization of the image, though further investigation is necessary to194

validate this conjecture.195
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Figure 6: A summary of Feature Inversion models when applied on two different randomly samples
noise images from a subset of the stimuli used in Harrington & Deza (2022). Standard and Pretrained
models poorly invert the original stimuli leaving high spatial frequency artifacts.
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4 Discussion196

A question from this work that motivated the writing of this paper beyond the achievement of a high197

score in the Brain-Score competition is: How does a CrossViT-18† perform so well at explaining198

variance in primate area V4 without many iterations of hyper-parameter engineering? In this paper,199

we have only scratched the surface of this question, but some clues have emerged.200

One possibility is that the cross-attention mechanism of the CrossViT-18† is a proxy for Gramian-like201

operations that encode local texture computation (vs global a la Geirhos et al. (2019)) which have202

been shown to be pivotal for object representation in humans (Long et al., 2018; Jagadeesh & Gardner,203

2022; Harrington & Deza, 2022). This initial conjecture is corroborated by our image inversion204

effects (Section 3.1) where we find that CrossViT’s preserves the structure stronger than Residual205

Networks (ResNets), while vanilla ViT’s shows strong grid-like artifacts.206

Equally relevant throughout this paper has been the critical finding of the role of the optimization207

procedure and the influence it has on achieving high Brain-Scores – even for non-biologically plausible208

architectures (Riedel, 2022). Indeed, the simple combination of adding rotation invariance as an209

implicit inductive bias through data-augmentation, and adding “worst-case scenario” (adversarial)210

images in the training regime seems to create a perceptually-aligned representation for neural211

networks (Santurkar et al., 2019).212

On the other hand, the contributions to visual neuroscience from this paper are non-obvious. Tra-213

ditionally, work in vision science has started from investigating phenomena in biological systems214

via psychophysical experiments and/or neural recordings of highly controlled stimuli in animals, to215

later verify their use or emergence when engineered in artificial perceptual systems. We are now in216

a situation where we have “by accident” stumbled upon a perceptual system that can successfully217

model (with half the full explained variance) visual processing in human area V4 – a region of which218

its functional goal still remains a mystery to neuroscientists (Vacher et al., 2020; Bashivan et al.,219

2019) –, giving us the chance to reverse engineer and dissect the contributions of the optimization220

procedure to a fixed architecture. We have done our best to pin-point a causal root to this phenomena,221

but we can only make an educated guess that a system with a cross-attention mechanism can even222

under regular training achieve high V4 Brain-Scores, and these are maximized when optimized with223

our joint adversarial training and rotation invariance procedure.224

Machine 
Perception

Human
Perception

In Distribution 
Image Set

Adversarial
Image Set

Out of Distribution 
Image Set

Figure 7: A cartoon inspired by Feather et al.
(2019, 2021) depicting how our model changes
its perceptual similarity depending on its optimiza-
tion procedure. The arrows outside the spheres
represent projections of such perceptual spaces
that are observable by the images we show each
system. While it may look like our winning model
is "nearly human" it has still a long way to go, as
the adversarial conditions have never been physio-
logically tested.

Ultimately, does this mean that Vision Trans-225

formers are good models of the Human Ventral226

Stream? We think that an answer to this ques-227

tion is a response to the nursery rhyme: "It looks228

like a duck, and walks like a duck, but it’s not229

a duck!" One may be tempted to affirm that it230

is a duck if we are only to examine the family231

of in-distribution images from ImageNet at in-232

ference; but when out of distribution stimuli are233

shown to both machine and human perceptual234

systems we will have a chance to accurately as-235

sess their degree of perceptual similarity5. We236

can tentatively expand this argument further by237

studying adversarial images for both perceptual238

systems (See also Figure 7). Future images used239

in the Brain-Score competition that will better240

assess human-machine representational similar-241

ity should use these adversarial-like images to242

test if the family of mistakes that machines make243

are similar in nature than to the ones made by hu-244

mans (See For example Golan et al. (2020)). If245

that is to be the case, then we are one step closer246

to building machines that can see like humans.247

5Consider for example, that some stimuli used in Brain-Score are a basis set of Gabor filters, which are never
encountered in nature

7


