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Abstract

Heart valves consist of leaflets that can degrade due to a range of disease processes.1

To better design prostheses, it is critical to study leaflet mechanics. Although2

mechanical testing of heart valve leaflets (HVLs) is the standard for evaluating3

mechanical behavior, imaging and deep learning (DL) networks, such as convolu-4

tional neural networks (CNNs), are more readily available and cost-effective. In5

this work, we determined the influence that a dataset that we curated had on the6

ability of a CNN to predict the stress-strain response of the leaflets. Our findings7

indicate that CNNs can be used to predict the polynomial coefficients needed for8

reconstructing the toe and linear regions of typically observed mechanical behavior,9

which lie near the physiological strain, 10% strain.10

1 Introduction: the importance of heart valves and their mechanical11

characterization12

HVLs are arguably one of the most important structures in the heart. They act as one-way valves and13

prevent oxygenated and deoxygenated blood from mixing Katz [2010]. However, diseases can impact14

their mechanical properties, so there is a continued pursuit to better mimic natural HVLs, which15

involves studying their mechanics. However, the standard for acquiring the mechanics of these is16

through traditional, uniaxial or biaxial mechanical testing Delgadillo et al. [2015], Ross et al. [2020],17

Lee et al. [1984], which is time-intensive, requires specialized equipment, and often results in the18

destruction of the samples being tested. Thus, in this work, we first curated and tested 51 total HVL19

samples’ images and mechanical data, considered several ground truths by setting different limits on20

the mechanical data, and finally sought to use DL to predict the stress-strain behavior of HVLs.21

1.1 Mechanics of HVLs22

Mechanical testing of HVLs involves the application of load in one or two directions on the HVL23

and observation of the resulting strain. This produces a non-linear stress-strain relationship which24

mostly consists of a non-linear toe region, a linear transition region, and a plastic region prior to25

failure Schoen and Levy [1999], Aikawa and Schoen [2014]. Although this behavior is observed in26

all valves, the prediction of each valve’s stress-strain curve from mechanical models is still off or27

consists of a group average.28

The resulting mechanics of HVLs arise from their multi-layered structure, however, the tensile29

properties of the leaflets are dominated by the collagen fibers that run along the circumferential30

direction of the leaflet Billiar and Sacks [2000], Vesely and Noseworthy [1992]. These are most31

present in the fibrosa layer, which resides on the aortic side of the leaflet and produces macroscopically32

visible folds as shown in 1a.33
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1.2 Accessibility and feasibility of needed resources34

Prior to testing the valve leaflets, these must be extracted from the heart, cut into the appropriate35

geometry, and a grasping mechanism must be applied carefully so as to not damage the tissue. Then,36

during testing, the applied load is typically measured through a piezoelectric sensor. This equipment37

is expensive, requires technical expertise to handle, and must be supervised to ensure proper operation38

and safety during mechanical tests. Additionally, many samples must be tested in a given time slot39

since these will go bad if they are not used posthaste. This places an expensive requirement on the40

investigator’s time and, for these reasons and those above, traditional mechanical testing is not an41

easily accessible methodology.42

1.3 Leveraging imaging and deep learning to predict physical properties43

In contrast, computational resources and imaging are more accessible. Imaging of the HVLs is44

already used for capturing dimensions and morphological details. Since the fibrosa layer is composed45

of macroscopically visible collagen fibers, deep learning strategies can be used to predict the resulting46

mechanical properties from inexpensive imaging methods. In particular, CNNs are one set of47

algorithms designed to extract features from images to make predictions about the image’s contents.48

Other works such as Sun et al. [2020], Shen et al. [2021], have been able to predict physical properties49

from imaging using DL. Thus, in this work, it was determined how our newly curated dataset50

consisting of HVL imaging and mechanical testing impacted the ability of a CNN to reconstruct the51

stress-strain response of the leaflets. This newly developed dataset is the first of its kind, so far that52

we are aware.53

2 Methods54

2.1 Imaging and mechanical testing of HVLs55

In this work, porcine HVLs that had been previously fixed in glutaraldehyde were used for imaging56

and mechanical testing. A Leica stereo microscope was used to capture HVL aortic surface images57

and a 22N load cell mounted on an Electroforce LM1 TestBench was used to measure the load. Each58

HVL was cut into a rectangular strip along the circumferential direction; parallel to the direction59

of the collagen bundles. Prior to testing, thin balsa wooden strips were glued to both ends of the60

sectioned leaflet for gripping purposes. Finally, HVLs underwent uniaxial tensile testing which61

consisted of a preconditioning phase to 10% strain at 1Hz for 10 cycles followed by a pull-to-failure62

phase at 0.1mm/s. This methodology has been extensively used in previous works such as Puperi63

et al. [2016], Mehta et al. [2018]. The setup can be seen in 1a.64

(a) HVL imaging and mech testing procedure (b) HVL image input, transformation, and output

Figure 1: Traditional mechanical testing vs. the proposed CNN framework.

2.2 Stress-strain reconstruction using a polynomial65

The stress-strain curve for every sample is obtained by using stress and strain relationships. Stress is66

calculated by using σ = F/A, where σ is the stress, F is the force, and A is the cross-sectional area.67

Strain is calculated by using ϵ = ∆D/lg , where ϵ is the strain, ∆D is the displacement of the moving68

grip head and lg is the gauge length of the sample. This data is produced by the mechanical tester as69

the samples undergo testing, allowing us to readily produce the stress-strain relationship. However,70

rather than using this continuous data directly with the CNN, we proposed to approximate the curves71

with a three-degree polynomial and evaluate these through the root-mean-squared error (RMSE).72
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The stress-strain curves of each sample have the characteristic toe (non-linear), linear transition,73

and yield regions, indicating that a polynomial could effectively approximate the data. This is74

advantageous because we can then obtain the coefficients, [a1, a2, a3], needed to reconstruct every75

individual sample’s stress-strain curve. Thus, these coefficients are extracted for every sample and76

we can then use these for training and testing of the CNN.77

2.3 Data preparation and prediction framework78

In this work, we created a dataset with 8 samples and another with 51 samples. The input to the CNN79

consists of RGB HVL sample images, while the ground truth consists of the samples’ stress-strain80

reconstructed curve coefficients. Additionally, we used a data augmentation technique that consisted81

of creating image patches (224x224) from the original image; each image patch derived from the82

same image had the same set of coefficients. These image patches were created by specifying the83

size of a window that served as an image patch’s template and then translating it across the original84

image. After these transformations, the data was ready to be used for training and testing. This work85

was inspired by that of Liang et al. [2017], however, we used more accessible imaging, focused on86

the macroscale, and used a different framework.87

Next, we used three well-known CNN architectures that were pre-trained on ImageNet Deng et al.88

[2009] since we aimed at having an accessible framework. The CNN architectures that we used were:89

Alexnet Krizhevsky et al. [2017], VGG11 Simonyan and Zisserman [2014], and Resnet18 He et al.90

[2016]. We selected these models because they have been extensively used for a variety of tasks in91

bioengineering, from classification tasks Xue et al. [2016], Chato and Latifi [2017] to composite92

design Cang et al. [2018], allowing us to focus on the development of our data.93

Testing also involved image patch transformations on a test sample image, yielding three coefficient94

values, [a1, a2, a3], for these image patches. The test sample’s overall coefficient values were then95

taken as the mean of each coefficient’s value, [aavg1, aavg2, aavg3]. The coefficients are predicted by96

passing the data from the fully-connected layers to a linear layer and these are then evaluated using97

the mean absolute error (MAE). The mobilization of the data is illustrated in 1b.98

2.4 Experiments99

We carried out three experiments to evaluate the influence that our curated dataset and framework100

had on predicting the coefficients needed for reconstructing a sample’s stress-strain curve: 1) using a101

smaller set vs. a larger set of samples, 8 and 51, respectively, 2) using a different strain threshold at102

which to limit the ground truth data, including hand-picked values near an individual sample’s yield,103

which we refer to as having a "loose" threshold, and 3) predicting only the linear and quadratic terms104

rather than also predicting the cubic term. These experiments were chosen to confirm that more data105

improves performance and to determine the impact on the prediction accuracy as variability in the106

mechanical data and the reconstructed curves’ coefficients are limited.107

3 Results108

3.1 Predicted reconstructed curves109

Stress-strain responses from HVLs are commonly reported up to the physiological strain of 10%110

in literature Sauren et al. [1983], Arjunon et al. [2013]. In alignment with the second experiment111

we performed, we varied the strain at which to limit the curve reconstruction using a three-degree112

polynomial to fit the data. Up to and past the physiological strain, our curve reconstruction scheme113

had low RMSE, however, incorrect behavior was observed when including data past or near the yield,114

which we defined with a "loose" threshold through manually picked strain values. Since the RMSE115

increased the closer and further away we got from the yield, we hypothesized and confirmed through116

experiment 2 and 3 that our framework would perform better when limiting the data to the toe and117

transition regions.118

3.2 Coefficient prediction119

From the first experiment, we saw an increase in the accuracy of the predicted coefficients, which120

was expected. For the small set, we had an MAE of 6.88, 4.40, and 6.73 for Alexnet, VGG11,121
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and Resnet18, respectively, while these had an MAE of 3.99, 3.66, and 3.81 for the larger set, see122

2a. Although more data is better, mechanical testing is an expensive procedure and our ability to123

leverage data augmentation to use the relatively few number of samples in the large set to acquire124

good prediction results is optimistic for future work. In the second experiment, we confirmed that125

limiting the ground truth data to the toe and linear transition regions improves the accuracy of the126

predictions as shown in Table 1. This was further confirmed in experiment 3, where we predicted for127

only the linear and quadratic terms as these are capable of capturing the variance from the toe and128

linear transition regions in the reconstructed curves. For the case in which 3 terms were predicted,129

the MAE was 65.60, 59.05, and 66.75 for Alexnet, VGG11, and Resnet18, respectively, while these130

were 3.99, 3.66, and 3.81 when only 2 terms were predicted, see 2b.131

(a) Small set vs. large set (b) Two vs. three terms

Figure 2: Good alignment between predicted and reconstructed curves in different experiments.

Table 1: High stress-strain variation at higher strain, yielding higher MAE at higher strain thresholds.
Architecture Ground Truth Threshold - Strain % Test MAE
Alexnet 5 2.40
VGG11 5 1.98
Resnet18 5 1.83
Alexnet 10 3.99
VGG11 10 3.66
Resnet18 10 3.81

Alexnet 15 6.97
VGG11 15 5.34
Resnet18 15 6.64

Alexnet Loose 8.37
VGG11 Loose 8.36
Resnet18 Loose 7.90

4 Conclusion132

Through the experiments we performed, we found that CNNs can be used to predict the circumferential133

stress-strain response of HVLs from a single image acquired from the sample. We suspect that this134

is because macroscopic imaging of the leaflet captures sufficient morphological details related to135

the mechanics of the leaflet. Using a larger training set, a strain cap to physiological strain or less,136

and limiting predictions to the linear and quadratic terms, we can reduce the MAE of the predicted137

coefficients. These results motivate further investigation of the architecture used to form predictions138

as well as preparation of the data, since we used a polynomial fit to reconstruct the stress-strain curves139

but could explore other models.140
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