Flexible Learning of Sparse Neural Networks via Constrained L_0 Regularization

Jose Gallego-Posada, Juan Ramirez and Akram Erraqabi

Mila Université H de Montréal

UNIVERSIDAD

Sparsity

Training, storing and deploying NNs can be very expensive. Fortunately, their performance is **robust** to parameter pruning.

A method for obtaining efficient neural networks is by training them to encourage **sparsity** during training.

$$\|\boldsymbol{\theta}\|_0 = \sum_{j=1}^{|\boldsymbol{\theta}|} \mathbb{I}\{\theta_j \neq 0\}$$

Regularization via <u>L</u>₀ <u>penalties</u> (Louizos et al., 2018)

Penalize the number of active parameters.

$$\mathcal{R}(oldsymbol{ heta}) = rac{1}{N} igg(\sum_{i=1}^N \ell\left(h(x_i; \ oldsymbol{ heta}), \ y_i
ight) igg) + \lambda \|oldsymbol{ heta}\|_0$$

Re-parametrize with **differentiable** stochastic gates based on concrete distributions.

$$egin{aligned} \mathcal{R}(ilde{oldsymbol{ heta}},oldsymbol{\phi}) & \triangleq \mathbb{E}_{oldsymbol{z} \mid oldsymbol{\phi}} \left[\mathcal{R}(ilde{oldsymbol{ heta}} \odot oldsymbol{z})
ight] \ &= \mathbb{E}_{oldsymbol{z} \mid oldsymbol{\phi}} \left[rac{1}{N} \sum_{i=1}^N \ell\left(h(x_i; \ ilde{oldsymbol{ heta}} \odot oldsymbol{z}), \ y_i
ight)
ight] + \lambda \ \mathbb{E}_{oldsymbol{z} \mid oldsymbol{\phi}} \left[\, \|oldsymbol{z}\|_0
ight] \ \end{split}$$

Regularization via L_0 constraints

$$\min_{\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}} \quad \mathfrak{f}_{\mathrm{obj}}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}) \triangleq \mathbb{E}_{\boldsymbol{z} \mid \boldsymbol{\phi}} \left[\frac{1}{N} \sum_{i=1}^{N} \ell\left(h(x_i; \; \tilde{\boldsymbol{\theta}} \odot \boldsymbol{z}), \; y_i \right) \right]$$
subject to
$$\mathfrak{g}_{\mathrm{const}}(\boldsymbol{\phi}) \triangleq \mathbb{E}_{\boldsymbol{z} \mid \boldsymbol{\phi}} \left[\|\boldsymbol{z}\|_0 \right] \leq \epsilon \cdot |\boldsymbol{\theta}|$$
expected # of active params In [0, 1] # of network params

Consider the associated Lagrangian and min-max game:

$$\begin{array}{ll} \mathcal{L}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}, \lambda) & \triangleq \mathfrak{f}_{\mathrm{obj}}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}) + \lambda \left(\frac{\mathfrak{g}_{\mathrm{const}}(\boldsymbol{\phi})}{|\boldsymbol{\theta}|} - \epsilon \right) \\ \tilde{\boldsymbol{\theta}}^*, \boldsymbol{\phi}^*, \lambda^* & = \operatorname*{argmin}_{\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}} \operatorname*{argmax}_{\lambda \geq 0} \mathcal{L}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}, \lambda) \end{array}$$

Constraints can be liberating

- ▲ *€* has **straightforward semantics**: the maximum proportion of active gates. Application specific requirements on sparsity can be incorporated into it.
- ▲ Tuning the penalization λ to get a satisfactory model may require running several experiments. Even harder when introducing various sources of regularization.
- ▲ It is **transparent** whether a model is respecting the sparsity constraints.

Training dynamics

Predictive performance

Architecture	Approach	Pruned	Best error (%)
MLP	Penalized [†] : $\lambda = 0.1/N$	219-214-100	1.4
784-300-100	Constrained: $\epsilon = 33\%$	198-233-100	1.4
LeNet	Penalized [†] : $\lambda = 0.1/N$	20-25-45-462	0.9
20-50-800-500	Constrained: $\epsilon = 10\%$	20-21-34-407	0.53

[†]C. Louizos, M. Welling, and D. P. Kingma. Learning Sparse Neural Networks through L0 Regularization. *ICLR*, 2018.

The constrained approach is **not universally** better than the penalized approach!

It **can** provide more flexibility and interpretability without compromising predictive performance.