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Abstract

Increases in flash rates detected in ground-based lightning data can be a precursor to
severe weather hazards [12, 6, 9]. Lightning data from the Geostationary Lightning
Mapper (GLM) aboard the GOES-16 satellite is not currently a systematic part
of an operational model used by forecasters and is underutilized in severe storm
research. We harness the spatial and temporal advantages of geostationary satellite
data to create a machine learning model that augments the current meteorological
practices and capabilities of forecasters during extreme weather. Our results suggest
that false alarms for warned thunderstorms could be decreased by half, and that
tornadoes and severe hail could be correctly identified 8 out of 10 times using GLM
data.

1 Motivation and Research Problem

Severe weather, defined in this work as thunderstorms that produce tornadoes and large hail (1-inch
or greater in diameter), can claim lives and cause substantial economic damage [7, 13]. In recent
years, societal exposure and costs associated with severe thunderstorm events has been increasing [13,
1]. The average warning lead time, which refers to the amount of time (in minutes) before the onset
of severe weather, is approximately 15 minutes [2]. While the forecast skill of National Weather
Service (NWS) meteorologists is high [4], decreasing the number of false alarms remains a priority
and can further increase public trust in severe weather warnings.

Various studies have been recently conducted that use machine learning to improve the lead time and
accuracy of severe hazard predictions. Convolutional neural networks (CNNs) have been used to
create skillful one-hour lead time forecasts of large hail from convection-permitting model output [10]
and of tornadoes using radar [11]. Arguably one of the most comprehensive machine learning models
for the prediction of severe hazards is the empirical ProbSevere model [4], but it does not incorporate
GLM information. The large geographic scope and high temporal frequency of underutilized GLM
data presented an opportunity to improve upon forecasts of severe weather.

2 Technical Contribution

Using GLM data we derived and gridded 8 higher-level quantities (flash extent density, flash centroid
density, average flash area, total energy, group extent density, group centroid density average group
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area and minimum flash area) onto 2 km x 2 km grids at a 1 minute cadence using the GLM Tools
package [3]. The nearly 4 million GLM L2 files ( 1.5 TB) spanned 2018 - 2020.

A supervised learning approach was pursued to train machine learning models using NOAA severe
weather reports as ground truth. Graph Neural Networks as well as some variants of Convolutional
Neural Networks (CNN) architectures, such as U-NET for image segmentation, were explored.
We also invested a considerable amount of time working in temporal-spatial architectures such as
3D-CNN and recurrent neural network architectures such as GRU-CNN. While these approaches
revealed some promising initial results these architectures require further tuning, data augmentation,
and training time to achieve desired results.

GLM data can also be represented as time series information. Using the 8 derived quantities from
GLM gridded data, we built time series in a 60 km x 60 km area centered on the coordinates of
the tornado and hail reports by summing the quantities in each pixel at each 1 minute interval.
These aggregated time series events comprise our positive class. For our null class (negative class),
we used severe weather warnings that were previously issued by NWS meteorologists and had no
associated severe weather reports within a 24-hour window. The time series generation for the null
class is identical to the positive class but centered in the centroid coordinates of the warning. These
considerations framed the challenge as a time series classification problem with a specific lead time
to allow nowcasting. Effectively, our model used 45 minutes of data in a certain region to assess the
probability of a severe weather event occurring within the next 15 minutes.

We explored InceptionTime neural network architecture [8] for time series classification, but decided
to use a recently developed method called ROCKET (RandOm Convolutional KErnel Transform).
According to the authors, ROCKET [5] is orders of magnitudes faster to train than InceptionTime
and offers similar skill compared to state of the art methods. ROCKET transforms the multivariate
time series using a large number of random convolutional kernels (random length, dilation, padding,
weights and bias) to create features, which can be used to train a classifier. A substantial difference
between ROCKET and a neural network is that the weights and biases are not learned but rather
randomly generated. This characteristic makes ROCKET extremely fast and simple to use, yet
powerful due to the large number of convolutional kernels used, these convolutions effectively
translate into features. Once the features are created, a classifier can be trained. We tested a
Ridge classifier and a Gradient Boosted Decision Trees (XGBoost) classifier, but as there were little
difference in the results, the Ridge classifier was chosen due to its simplicity. The skill of the model
is assessed using two widely used metrics in atmospheric science, the Critical Success Index (CSI)
and the False Alarm Ratio (FAR). The definition of these metrics are based on the 2x2 contingency
table (confusion matrix). The CSI metric is defined as the ratio of hits to the sum of hits, misses, and
false alarms (higher values are better) and the FAR metric is defined as the ratio of false alarms to the
sum of false alarms and hits (lower values are better).

When compared to the state of the art [4], our results for the CSI and FAR metrics are better. However,
caution is needed when comparing these metrics, as the state of the art provides greater lead time,
larger geographic coverage, and a longer temporal range.

Table 1: State of the art comparison

Our results State of the art

Lead time 15 min > 15 min
Coverage Central US (1,000 km x 800 km) CONUS
Period Mar-Jun 2019 May-Jul 2014, Mar-Dec 2016
CSI 0.49 0.35
FAR 0.41 0.66

There are several limitations that are important to acknowledge in this study. Our machine learning
labels consisted of NOAA severe thunderstorm reports, which contain issues related to population
biases and reporting practices [14]. The strong cross-correlations among the input GLM variables also
present challenges in interpreting the reasons for high model skill and discovery of important physical
features that may be related to severe thunderstorm activity. Moving forward, these limitations may
be addressed and the work may be enhanced in the following ways. Extending the model into other
geographic regions and seasons and a longer lead time could increase its value to a wider population.
The addition of radiance information in the time series model could also increase our model’s skill.
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Broader Impact

The goal of this research is intended to help forecasters. Ultimately, we aim to have our models tested
at the NOAA Hazardous Weather Testbed in Norman, Oklahoma first-hand by forecasters. However
there is much future work and testing needed in order to achieve this goal.
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