
Covariate Shift Adaptation in High-Dimensional and
Divergent Distributions

Felipe Maia Polo
University of São Paulo

Advanced Institute for Artificial Inteligence (AI2)
felipemaiapolo@gmail.com

Renato Vicente
University of São Paulo

Experian DataLabs LatAm
rvicente@usp.br

1 Introduction1

In real world applications of supervised learning methods, training and test sets are often sampled
from the distinct distributions and we must resort to domain adaptation techniques. One special class
of techniques is Covariate Shift Adaptation2, which allows practitioners to obtain good generalization
performance in the distribution of interest when domains differ only by the marginal distribution
of features. Traditionally, Covariate Shift Adaptation is implemented using Importance Weighting
which may fail in high-dimensional settings due to small Effective Sample Sizes (ESS).

In this paper, we propose (i) a new connection between ESS, high-dimensional settings and gen-
eralization bounds and (ii) a simple, general and theoretically sound approach to combine feature
selection and Covariate Shift Adaptation. The new approach yields good performance with improved
ESS. Existing solutions to the same problem are not prone to interpretability [13] or general in terms
of suitable hypothesis classes [10, 17].

From now on, we denote the source/train joint distribution as Qx,y and a different target/test joint
distribution by Px,y. Features and labels are sampled from the same measurable space (X × Y,Σ),
with Qy|x = Py|x and Qx 6= Px.

2 Effective Sample Size (ESS), Covariate Shift Adaptation and
Generalization Bounds

In this section we assume the true importance function, a.k.a. density ratio, is known up to a constant.
If ESS is a concept borrowed from Monte Carlo literature, how we should transpose the importance
of ESS to the Covariate Shift Adaptation framework is an important question. In the following we
show that there is a close relationship between the above definition of ESS and generalization bounds
under importance weighting in covariate shift correction.

Consider two probability distributions Px and Qx over X ⊆ Rd, Px � Qx, with probability density
functions px and qx, respectively. Suppose we have a random sample {xi}ni=1, independently sampled
from the distribution Qx, and we define the weights wi = w(xi) ∝ px(xi)/qx(xi). Assuming
0 < Ex∼Qx

[
w(x)2

]
<∞ and using the most common formulation for the ESS [11, 7], i.e. ESS :=

(
∑n
i=1 wi)2/(n

∑n
i=1 w2

i), it is possible to show that ESS a.s.−−→ ESS∗ = 1/d2(Px||Qx) when n→
∞. The quantity d2(Px||Qx) equals exp [D2(Px||Qx)], where the quantity in the exponent is the
Rényi Divergence of order 2 of Px from Qx [16, 2].

It is very interesting how Rényi Divergence naturally emerges when working with ESS. It is a keypoint
to understand that, when calculating the Effective Sample Size, we are actually approximating a

1This is an abstract of [9] and our package to make feature selection can be found in https://github.
com/felipemaiapolo/infoselect.

2See [12, 14] for an introduction.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/felipemaiapolo/infoselect
https://github.com/felipemaiapolo/infoselect

quantity inversely proportional to the exponential of Rényi Divergence of order 2 of Px from Qx.
The result above essentially tells us that a lower ESS is related to more divergent distributions
Px and Qx. Another important result is that given two joint probability distributions Px1,x2 and
Qx1,x2 over X ⊆ Rd, with joint probability density functions px1,x2 and qx1,x2 , we have that
D2(Px1,x2

||Qx1,x2
) ≥ D2(Px1

||Qx1
). That is, the Rényi Divergence (and its exponential) does

not decrease with the number of variables (dimensions). The last result also tells us that ESS∗

non-increases with the number of dimensions, what indicates potential problems.

Going deeper, it is evident the dimensionality of the problem may play an important role considering
the Theorem 3 proved by [2]. According to the result shown by [2], a larger ESS∗ leads to a
tighter generalization bound of an importance weighted learning algorithm. In consequence, the
rationale behind using ESS as an heuristic for diagnosis of Covariate Shift Adaptation becomes clearer.
Furthermore, as long as ESS∗ is inversely connect with the number of dimensions, the generalization
bounds get tighter when we discard some variables and everything else is held constant. Thus, it
seems that performing a smart feature selection before Covariate Shift Adaptation by maintaining
only the essential information about the labels3 should be a good procedure, as long as we have a
larger ESS∗, tighter generalization bounds and approximately the same potential performance for our
models.

3 Variable Selection for Covariate Shift Adaptation

Here we propose a feature selection approach prior to covariate shift correction. Working with
a good subset of features potentially enables a greater ESS and better generalization. Right after
feature selection, the covariate shift adaptation is carried via importance weighting using off-the-shelf
methods for density ratio estimation.

Theorem 1 from [13] supports the idea of using Sufficient Dimensionality Reduction (SDR) in order
to make dimensionality reduction while having a solution for the problem of covariate shift adaptation
in high-dimensions. We adapt that idea to make sense of feature selection prior to covariate shift
adaptation.

Variable Selection via Sufficient Dimensionality Reduction (SDR): Given a set of features x and
a target variable y, the objective of SDR [4, 15] is to find a matrix M ∈ Rd×d′ , with d′ < d and
M>M = Id′ , such that y ⊥⊥ x |M>x. That is, the representation M>x is sufficient for y. Usually,
M is assumed to be dense, but we focus in the case where the matrix M is sparse and each column
of it is given by zeros, except for one entry set as 1 to create a feature selector, as it is done in [4].

An interesting way to face the problem of Sufficient Dimensionality Reduction is using the concept of
Mutual Information [15]. Recall that the Mutual Information between y and a random vector x′, sam-
pled from Qx′,y, with probability density function qx′,y, is given by I(y;x′) = EQx′,y [log v(x′, y)],
where v = qx′,y/[qx′qy] is a density ratio. It is possible to show that if we consider a random
vector x = (x1,x2) and a random variable y that have joint distribution Qx,y and p.d.f. qx,y, then
I(y;x) ≥ I(y;x1) and I(y;x) = I(y;x1) iff y ⊥⊥ x|x1. Therefore, if we find a subset of features x1

from original set x = (x1,x2) that I(y;x) is close to I(y;x1), then working with this subset can be
sufficient for our purposes.

Testing all the possibilities of subsets x1 quickly becomes impracticable with bigger number of
dimensions even if distributions that generated the data are known. Thus, we adopt a greedy strategy
called "Forward Selection" [5, 9]. A generally more precise but slower algorithm in this case is
Backward Elimination [5]. In words, Forward Selection starts choosing the feature that has the largest
estimated mutual information with the target variable and, at each subsequent step, we select the
feature that marginally maximizes the estimated mutual information. We repeat the process until we
reach a stop criterion, e.g. mutual information marginal growth is low.

An efficient alternative for estimating mutual information to perform feature selection for regression
and classification problems is the use of Gaussian Mixture Models (GMMs) [3, 6]. Even though we
consider GMM for mutual information estimation and feature selection, we acknowledge that there
are other options that would fit our methodology.

3We might think the true function we are trying to learn depending only on some subset of features.

2

References
[1] Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning for differing

training and test distributions. In Proceedings of the 24th international conference on Machine
learning, pages 81–88, 2007.

[2] Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for importance
weighting. In Advances in neural information processing systems, pages 442–450, 2010.

[3] Emil Eirola, Amaury Lendasse, and Juha Karhunen. Variable selection for regression problems
using gaussian mixture models to estimate mutual information. In 2014 International Joint
Conference on Neural Networks (IJCNN), pages 1606–1613. IEEE, 2014.

[4] Kenji Fukumizu, Francis R Bach, and Michael I Jordan. Dimensionality reduction for supervised
learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research,
5(Jan):73–99, 2004.

[5] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal
of machine learning research, 3(Mar):1157–1182, 2003.

[6] Tian Lan, Deniz Erdogmus, Umut Ozertem, and Yonghong Huang. Estimating mutual infor-
mation using gaussian mixture model for feature ranking and selection. In The 2006 IEEE
International Joint Conference on Neural Network Proceedings, pages 5034–5039. IEEE, 2006.

[7] Art B. Owen. Monte Carlo theory, methods and examples. ., 2013.

[8] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830,
2011.

[9] Felipe Maia Polo and Renato Vicente. Covariate shift adaptation in high-dimensional and
divergent distributions. arXiv preprint arXiv:2010.01184, 2020.

[10] Sashank Jakkam Reddi, Barnabas Poczos, and Alex Smola. Doubly robust covariate shift
correction. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[11] Christian P Robert, George Casella, and George Casella. Introducing monte carlo methods with
r, volume 18. Springer, 2010.

[12] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.

[13] Petar Stojanov, Mingming Gong, Jaime G Carbonell, and Kun Zhang. Low-dimensional density
ratio estimation for covariate shift correction. Proceedings of machine learning research,
89:3449, 2019.

[14] Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary environments:
Introduction to covariate shift adaptation. MIT press, 2012.

[15] Taiji Suzuki and Masashi Sugiyama. Sufficient dimension reduction via squared-loss mutual
information estimation. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 804–811, 2010.

[16] Tim van Erven and Peter Harremoës. Rényi divergence and kullback-leibler divergence. arXiv
preprint arXiv:1206.2459, 2012.

[17] Fulton Wang and Cynthia Rudin. Extreme dimension reduction for handling covariate shift.
arXiv preprint arXiv:1711.10938, 2017.

3

4 Supplementary Material: Experiments

4.1 A Toy Model Experiment

We present a toy model in order to gain some intuition about the concepts presented. Assume there
are two joint distributions of features and labels Pλ and Q with densities pλ and q, being the case that
Q describes the source/training population and that Pλ describes the target/test population. Moreover,
we assume we are facing the classical covariate shift problem, that is, pλ(y|x) = q(y|x) = p(y|x)
but pλ(x) 6= q(x), plus the fact that we cannot sample the labels from the test population. Finally,
consider q(x) = N (x|0, Id) and pλ(x) = N (x|λ · 1, Id), for λ 6= 0, with d indicating the number
of dimensions. Suppose p(y|x) = N (y|100 · x1, 1), that is, y depends on x only through its first
coordinate x1. First we calculate D2(Pλ||Q) and ESS∗ as functions of d and then simulate how the
predictive power of a decision tree regressor deteriorates as ESS∗ decreases and d increases. We train
the trees by minimizing the empirical error weighted by the true weighting function w in the training
set, also imposing a minimum of 10 samples per leaf as a regularization strategy. We choose to work
with decision trees since they are robust against irrelevant features, thus it is reasonable to expect that
great part of performance deterioration is not due to noisy features.

The first step to calculate D2(Pλ||Q) is to calculate its exponential:

d2(Pλ||Q) = Ex∼Pλ

[
pλ(x)

q(x)

]

= Ex∼Pλ

{
exp[− 1

2 (x− λ1)>(x− λ1)]

exp[− 1
2x
>x]

}

= exp
(
−dλ

2

2

)
· Ex∼Pλ

exp

λ d∑
j=1

xj


= exp(dλ2)

The last equality is true since exp(λ
∑d
j=1 xj) ∼ LogNormal(dλ2, dλ2). Then, D2(Pλ||Q) = dλ2

and ESS∗ = exp(−dλ2). Figure 1 depicts our results:

Figure 1: (i) We plot the Rényi Divergence of the target dist. Pλ from the source dist. Q as a function of the
number of features. Both distributions are normal with the same covariance matrix but located

√
dλ2 units apart

from each other, i.e. the divergence also depends on |λ|; (ii) We plot the ESS∗ as a function of d and also varying
λ. As expected, ESS∗ exponentially decays in d as long as the divergence is linearly related with d; (iii) In 50
simulations for each pair (λ, d), we observe how decision trees’ performances deteriorate due to low ESS.

The figure above depicts the behavior of Rényi Divergence and ESS∗ as functions of d. We also
vary the value for λ. When |λ| is bigger, the divergence between the source and target distributions
also increases. An interesting fact is that the divergence between the distributions is not noticeable
by only looking at marginals. Finally, to check how large d affects performance of a regressor we,
for each d, (i) sample 50 training and test sets, (ii) train the trees on the training set minimizing the
weighted empirical error and (iii) assess the regressors on the test sets. The third plot of Figure 1,

4

represents the average root-mean-square error ± standard deviations across samples. Clearly the
regressor deteriorates as the divergence between domains grows larger.

4.2 Experiments with real data

For the following experiments, 10 regression tasks datasets with no missing values have been selected4.
Each experiment consisted of (i) artificially causing covariate shift, (ii) estimating the weights, (iii)
correcting the shift by the importance method, and finally (iv) assessing the performance of the
predictors as well as the effective sample size. Besides regressions tasks, we have also performed
classification tasks by binarizing the target variables using their medians as a threshold. We have
used the same datasets for both regression and classification experiments to make performance
comparisons easier. In each one of 10 datasets, we have performed the following pre-processing
steps: (i) we kept up to 8,000 data points per dataset, (ii) augmented the number of features up to 40
features where the new features are consisted by independent Gaussian noise and (iii) standardized
each column in every dataset.

Right after the pre-processing steps, the following procedure have been used to create divergent
training and test sets. For each one of the datasets, we have sampled a sequence of vectors uniformly
from [−1, 1]d and have projected the data points onto the subspace generated by each vector, resulting
in only one feature x

(j)
i per sample i for each subspace/simulation j. For each x

(j)
i , we have

calculated the score sij = Φ
(
[x

(j)
i −median(x(j))]/σj

)
, which is the probability that the data point

i from simulation j is selected to the training set. According to that score, we randomly allocate
each data point in either the training or test set in simulation j. The constant σj is adjusted until the
effective sample size is less than 0.01. For each one of the training/test sets, we fit two decision trees:
one in the training set and one in a subset of the test set. Then, we test both decision trees in the
unused portion of the test set and compare their performance according to the Mean Squared Error
for regression and Classification Error (1 - Accuracy) for classification. We have selected the 100
simulations in which decision trees trained in the test sets did best, relatively to the training set tree.
We chose Decision Trees because they are fast to train and robust against irrelevant features. Thus,
the noisy features added in the datasets are not likely to directly affect predictive power, but only
making the effective sample size smaller.

To make feature selection, we have combined our selection algorithm with Gaussian Mixture Models
to estimate the mutual information between a subset of features and the target variable5. Our stopping
criteria used in our selection algorithm is that we should stop selecting features when the marginal
improvement in the empirical mutual information in less than 1% relative to the last level or when
we select the first 15 features. To estimate the weighting function for covariate shift correction,
we have used the probabilistic classifier approach [1, 14] with Logistic Regression model with a
quadratic polynomial expansion of the original features. Some of our benchmarks use Adaptive
Weighting [12, 14], which is an attempt to make ESS higher. Adaptive Weighting elevates the raw
weights to the power of a flattening parameter γ ∈ [0, 1], where γ is chosen by Importance-Weighted
Cross-Validation [14]. The optimal γ gives a good balance between bias and variance for the risk
estimation.

We work with four basic scenarios for training the models. Firstly, we use the whole set of features
and no weighting method. In the second scenario we use the whole set of features and make use of
’true’ weights (1− sij)/sij . In the third, we use the whole set of features and estimate the weights
using the probabilistic classifier approach. Finally, we use only selected features and estimate the
weights using the probabilistic classifier approach. In the last three scenarios, we use both raw
weights and their flattening version, i.e. we also use the Adaptive Weighting method, choosing the
flattening parameters by a validation scheme.

Table 1 shows, for each and every one of the datasets employed, (i) the original number of features,
(ii) the augmented number of features, (iii) the average number of selected features (± std. deviation)
for the regression experiments and (iv) for the classification experiments.

4From www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html and https://archive.ics.uci.
edu/ml/datasets.php.

5More details on hyperparameter tuning can be found in the next section

5

www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php

Dataset Original Augment. Selected (Reg) Selected (Class)
abalone 7 40 3.93± 1.26 11.94± 4.57
ailerons 40 40 4.92± 0.52 3.82± 0.68

bank32nh 32 40 10.00± 1.84 13.19± 1.69
cal housing 8 40 5.53± 1.14 6.71± 4.51

cpu act 21 40 10.01± 1.14 2.61± 0.79
delta ailerons 5 40 3.92± 0.42 3.70± 0.67

elevators 18 40 7.96± 0.79 12.91± 2.24
fried delve 10 40 4.48± 0.50 5.00± 0.00
puma32H 32 40 1.98± 0.14 11.76± 4.63

winequality 11 40 9.56± 1.09 14.00± 0.00

Table 1: Average Numbers of features (± std. deviation) - in this table we compare the numbers of original,
augmented and selected (for regression and classification tasks) features. It is possible to note that, on average,
we select small subsets of features, even smaller than the original set.

All feat. All feat. (True Weights) All feat. (Estimated Weights) Selected feat. (Estimated Weights)
Dataset Unweighted Raw Adapt. Raw Adapt. Raw Adapt.

R
eg

re
ss

io
n

abalone 1.00 1.37± 0.21 1.05± 0.13 1.22± 0.17 0.99± 0.06 0.91± 0.05 0.91± 0.05
ailerons 1.00 1.02± 0.13 0.98± 0.07 0.98± 0.10 0.97± 0.06 0.87± 0.10 0.89± 0.13

bank32nh 1.00 1.27± 0.12 1.03± 0.10 1.19± 0.09 1.01± 0.06 0.97± 0.05 0.94± 0.04
cal housing 1.00 1.52± 0.25 1.03± 0.16 1.38± 0.21 0.98± 0.10 0.85± 0.08 0.84± 0.07

cpu act 1.00 0.55± 0.62 0.48± 0.52 0.58± 0.64 0.59± 0.52 0.15± 0.22 0.22± 0.30
delta ailerons 1.00 1.37± 0.14 1.05± 0.12 1.26± 0.10 1.00± 0.04 0.91± 0.03 0.91± 0.04

elevators 1.00 1.09± 0.16 0.97± 0.09 1.04± 0.14 0.98± 0.08 0.84± 0.15 0.83± 0.11
fried delve 1.00 1.56± 0.20 1.09± 0.12 1.39± 0.12 1.02± 0.06 0.88± 0.09 0.88± 0.09
puma32H 1.00 2.11± 0.99 1.07± 0.14 1.45± 0.19 1.02± 0.06 1.02± 1.07 1.02± 1.06

winequality 1.00 1.31± 0.12 1.06± 0.10 1.23± 0.09 1.02± 0.07 0.95± 0.04 0.94± 0.03

C
la

ss
ifi

ca
tio

n

abalone 1.00 1.24± 0.15 1.02± 0.16 1.16± 0.14 0.97± 0.11 1.00± 0.12 0.92± 0.10
ailerons 1.00 1.03± 0.22 0.93± 0.16 1.00± 0.17 0.91± 0.14 0.84± 0.13 0.86± 0.13

bank32nh 1.00 1.22± 0.10 1.04± 0.10 1.17± 0.09 1.00± 0.07 0.97± 0.07 0.94± 0.05
cal housing 1.00 1.39± 0.20 1.02± 0.15 1.32± 0.17 0.97± 0.11 0.90± 0.17 0.88± 0.16

cpu act 1.00 1.07± 0.13 0.95± 0.10 1.03± 0.12 0.97± 0.11 0.98± 0.12 0.97± 0.12
delta ailerons 1.00 1.32± 0.29 0.94± 0.13 1.21± 0.22 0.92± 0.11 0.83± 0.09 0.83± 0.08

elevators 1.00 1.06± 0.13 0.97± 0.10 1.03± 0.12 0.95± 0.09 0.88± 0.11 0.89± 0.09
fried delve 1.00 1.31± 0.16 1.04± 0.10 1.22± 0.13 1.02± 0.09 0.83± 0.05 0.82± 0.05
puma32H 1.00 1.65± 0.55 1.01± 0.10 1.19± 0.14 1.01± 0.08 1.05± 0.38 1.02± 0.35

winequality 1.00 1.16± 0.10 1.02± 0.11 1.11± 0.09 1.00± 0.09 1.03± 0.09 0.97± 0.07

Table 2: Average Test Errors (± std. deviation) - here we compared the predictive performance of decision
trees in the test set of 100 different simulations for each dataset. We have four basic scenarios: (i) whole set of
features and no weighting method; (ii) whole set of features and use of ’true’ weights; (iii) whole set of features
and estimated weights; (iv) selected features and estimated weights. In the last three scenarios, we use both raw
weights and their flatter version ("Adapt."). The numbers reported are the (relative) MSE and classification error
averages and their std. deviations.

From Table 1, it is possible to note that, on average, we select small subsets of features, even smaller
than the original set. The small number of selected features for some datasets is probably due to the
nature of the selection method, allowing the discarding of highly redundant features even though
they are relevant separately. It seems that using Gaussian Mixture Models to make feature selection
usually works better for regression compared to classification tasks. Among other factors, that can be
due to the loss of information when binarizing the target variable in some cases.

In Table 2, we see predictors’ average test errors (± std. deviation), with all errors relative to
the first scenario. From Table 2, it is noticeable that our feature selection approach and posterior
weighting, combined or not with the Adaptive Weighting method, systematically outperforms all
the other benchmarks, especially the pure weighting method when the whole set of features is used.
Even the benchmarks that used true weights are often beaten by large margins. That suggests that
the degradation in the model performances is mainly due to low effective sample size instead of a
difficulty in estimating the weighting function. Let us directly evaluate how feature selection affects
ESS looking at Figure 2.

In Figure 2, one can see the distribution of Effective Sample Sizes in all the weighted approaches,
calculated in the entire set of experiments. It is possible to notice how small the ESSs can be by
adopting the pure weighting strategy. Using the Adaptive Weighting method, without prior feature
selection, yields very high ESS in exchange for higher biases. The feature selection itself allows

6

higher ESSs and, when combined with Adaptive weighting, it yields the highest ESSs with less
pronounced biases.

Figure 2: Effective Sample Size distributions across all experiments. Notice higher ESSs can be achieved by a
prior feature selection stage. We use both raw weights and their flatter version ("Adapt.") in a combination of
scenarios which includes all/selected features and true/estimated weights.

4.2.1 Hyperparameters

In the experiments section, we tune four hyperparameters: (i) l1 regularization parameter used to
train the logistic regression model when estimating w, (ii) the minimum number of samples per leaf
in each regression/classification tree, (iii) the flattening parameter γ used to make the weighting
function flatter and (iv) number of GMM components. We use the Scikit-Learn [8] implementations
to train the logistic regressions, regression/classification trees and GMMs. First, we choose the l1
logistic regression regularization parameter C from values in [10−4, 5], in order to minimize the
log loss in a holdout dataset. Second, we choose the minimum number of samples per leaf in each
regression/classification tree from values in [5, 15, 25, 40, 50], in order to minimize the mean squared
error or classification error within a 2-fold cross-validation procedure. Third, we choose γ from
[.1, .2, .3, .4, .5, .6, .7, .8, .9] using Importance-Weighted Validation [14] in a holdout dataset. Finally,
we maximize the log-likelihood in a holdout dataset to choose the number of GMM components,
varying the possible number of components within the list [1, ..., 15].

7

