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Abstract

Several deep learning architectures have been proposed over the last years to deal
with the task of generating a written report given an imaging exam as input. Most
works evaluate the generated reports using standard Natural Language Processing
(NLP) metrics (e.g. BLEU, ROUGE), reporting significant progress. This article
contrast this progress by comparing state of the art (SOTA) models against weak
baselines. We show that simple and even naive approaches yield near SOTA
performance on most traditional NLP metrics. We conclude that evaluation methods
in this task should be further studied towards correctly measuring clinical accuracy,
involving physicians to contribute to this end.

1 Introduction

Writing reports from medical images is a everyday labor for radiologists, like the given example of a
chest X-rays shown in Figure 1. This task has already been addressed with deep learning approaches
[e.g. 7, 9, 12, 14, 15], typically with encoder-decoder architectures employing a CNN to extract
image features and an RNN for text generation. In most works, the authors evaluate the model
performance using Natural Language Processing (NLP) metrics, such as BLEU [11], ROUGE-L [8]
and CIDEr-D [13]. However, it has been discussed that these metrics cannot measure correctness in
the medical domain [1, 9, 17], and that a small improvement in them may not implicate an actual
quality improvement [10]. Some works have attempted to design a more appropriate evaluation
method, for example, Liu et al. [9] applied the Chexpert Labeler [6] over the original and generated
reports to classify 14 diseases, and used classification metrics, such as accuracy and ROC-AUC. In
this work, we further inspect some NLP metrics by benchmarking different models against SOTA
using the IU X-ray dataset [2], showing that weak baselines achieve comparable scores.

Original report (extract):
The cardiac silhouette is enlarged. The
lungs are hyperexpanded with flatten-
ing of the bilateral hemidiaphragms. No
pneumothorax or pleural effusion.

Possible constant report:
The cardiac silhouette is normal in
size and configuration. The lungs
are clear. No pneumothorax or
pleural effusion.

Figure 1: Example from the IU X-ray dataset [2]: frontal chest X-ray and an extract of the radiologist’s
report. The third column shows a possible constant report, which obtains high BLEU and ROUGE-L
scores of 0.56 and 0.676, but describes incorrect clinical facts in two of its sentences.

2 Methods and Results

We compared weak baselines and CNN-LSTM architectures against SOTA [9, 14, 7, 15].
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Weak baselines. Five baselines are implemented. (1) Random: selects a report randomly from the
training set. (2) Constant: always outputs the same report, which we built with some of the most
common sentences describing no findings (see example in Figure 1). (3) Nearest-neighbor: looks for
the most similar image in the training set and output its report. (4) Top-sentences-N / (5) Top-words-N:
selects the N most common sentences/words of the training set and returns them in random order.

CNN-LSTM. A CNN extracts features from the input image, which are fed to an LSTM that generates
the report word by word. Each input word is passed through an embedding layer. Two variants are
implemented, (1) CNN-LSTM: the image features are fed to a fully connected layer to reduce its size
and to initialize the LSTM hidden state. (2) CNN-LSTM-att: same as (1), plus using an attention
network over the spatial dimension of the image features at each step, and concatenating the attended
features with the word embedding input. The attention network consists of two fully connected
layers with a tanh activation, following the method used by Tian et al. [12]. We tested several CNNs:
Mobilenet-v2 [4], Resnet-50 [3], Densenet-121 [5]; the latter performed the best.

2.1 Results

Table 1 shows the each model’s performance in terms of NLP metrics, besides accuracy and ROC-
AUC calculated after applying the Chexpert Labeler to the reports (both macro-averaged across
14 diseases). All metrics range from 0 (worst) to 1 (best), except for CIDEr-D, which reaches a
maximum of 10. The top three results per column are in bold, showing weak baselines achieve scores
near to or better than SOTA models, considering BLEU and ROUGE-L. However, Chexpert metrics
show that models are not detecting diseases correctly, as the baseline AUC for a binary classification
task is 0.5. Notice that because most sentences in the reports describe no abnormalities (about 76%
of the sentences in the dataset), simple baselines can achieve high accuracy. Also, CIDEr-D shows a
strong difference between two SOTA models and naive baselines, though they obtain similar accuracy.
These facts suggest NLP metrics may not be suitable for evaluating the generated reports, and further
research should determine how to assess this task automatically.

Table 1: Model performance in the IU X-ray dataset [2]. Results are taken from each paper, except
for TieNet which are taken from Liu et al. [9]. B: BLEU, R-L: ROUGE-L, C-D: CIDEr-D.

Model B-1 B-2 B-3 B-4 B R-L C-D Acc AUC

Liu et al. [9] 0.369 0.246 0.171 0.115 0.225 0.359 1.490 0.916 -
TieNet [14] 0.330 0.194 0.124 0.081 0.182 0.311 1.335 0.902 -
KERP [7] 0.482 0.325 0.226 0.162 0.298 0.339 0.280 - -
Xue et al. [15] 0.477 0.332 0.243 0.189 0.310 0.380 - - -
Constant 0.455 0.312 0.223 0.165 0.289 0.357 0.293 0.915 0.500
Random 0.362 0.197 0.117 0.075 0.188 0.264 0.112 0.894 0.508
Nearest-neighbor 0.383 0.220 0.142 0.100 0.211 0.288 0.230 0.903 0.518
Top-sentences-100 0.347 0.211 0.138 0.096 0.198 0.281 0.166 0.911 0.498
Top-words-50 0.375 0.102 0.019 0.000 0.124 0.224 0.075 0.835 0.509
CNN-LSTM 0.379 0.239 0.164 0.117 0.225 0.338 0.284 0.912 0.505
CNN-LSTM-att 0.361 0.226 0.152 0.106 0.211 0.314 0.187 0.918 0.508

3 Conclusions and future work

Given the task of image-based medical report generation, we compared multiple models to the SOTA,
using NLP metrics and the Chexpert Labeler. We found that some weak baselines performed almost
as well as some SOTA models in terms of BLEU and ROUGE-L, suggesting that either these models
do not perform so well in a clinical sense, or that these NLP metrics are not able to differentiate
automatic methods. Furthermore, we can raise multiple research questions, are SOTA models actually
performing better than weak baselines in a clinical sense? Do NLP metrics correlate with medical
judgement for this task? How to directly measure medical correctness in a generated report? In future
work, we will address these questions by asking radiologists to assess generated reports, and we will
test the metric MIRQI, which was recently proposed by Zhang et al. [16] and is designed to measure
clinical correctness in the written reports.
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Broader Impact

This research attempts to generate further discussion on how to measure progress on medical report
generation from medical images. Despite the lack of scalable resources to judge generated reports’
quality (expert physicians), we believe the gold standard should consider expert human judgment to
assess these methods. Several methods use traditional metrics such as ROUGE or BLEU, but since
they have been contested in tasks such as Machine Translation [10], we suggest to further investigate
how appropriate it is to use them for assessing medical report generation. We propose moving forward
to metrics actually measuring medical accuracy rather than traditional Natural Language Generation
(NLG). We expect to positively impact this area of research, by providing new metrics to further
impact the progress of the application of NLP to medical reporting.
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