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Abstract

Motivated by the several engineering applications it has in areas such as machine
learning, power, transportation, and water distribution systems, and distributed
network control, see [1] and references therein, we study the accelerated, efficient
and robust solution of accelerated distributed optimization problems over network
systems characterized by connected and undirected graphs G := (V, E), where V =
{1, 2, . . . , n} is the set of nodes, and E ⊂ V × V is the set of edges. Specifically,
we consider the setting where each node i has a local function fi : Rp :→ R, and
the network cooperates to find a common point z∗ ∈ Rp that minimizes a global
function defined as the summation of the local costs. This distributed optimization
problem can be written as

min
z1,z2,...,zn∈Rp

n∑
i=1

fi(zi), s.t. zi = zj , ∀ i, j ∈ V, (1)

which is also known in the literature as the consensus-optimization problem [2].
Discrete-time and continuous-time approaches to solve problem (1) have been
extensively studied using gradient descent and Newton-based dynamics [3], [4],
primal-dual dynamics [5], and projected dynamics [6], to name just a few. However,
a persistent challenge in the solution of problem (1) is to achieve fast rates of
convergence without sacrificing essential robustness properties of the algorithms.
As recently shown in [7, 8], this task is not trivial given that certain classes of
accelerated continuous-time algorithms, such as Nesterov’s ODE [9, 10, 11], can
be destabilized under arbitrarily small disturbances on the states or gradients. Since
these disturbances are unavoidable in practice, there is an urgent need for the
development of robust, accelerated and distributed algorithms for the solution of
problem (1).
In the literature of accelerated centralized optimization, one of the approaches
that has received significant attention during the last years is the incorporation of
restarting techniques. As a matter of fact, as shown in [9],[12], [13], [14], and
[15], accelerated algorithms with restarting techniques can achieve exponential
convergence rates in strongly convex optimization problems without having perfect
knowledge of the condition number of the cost function. Moreover, restarting
can also be used to induce suitable robustness properties in the Nesterov’s ODE,
provided the combination of the continuous-time dynamics and the discrete-time
dynamics is carefully carried out [7]. While these ideas have been explored and
validated in centralized optimization problems, as mentioned in [16], it remains an
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Figure 1: We design an algorithm to solve the consensus-optimization problem from a complete
dual perspective, by constructing dynamics for the dual variable x ∈ Rnp. The proposed ac-
celerated dynamics make use of a momentum variable y ∈ Rnp, and timers τi for each one of
the agents. In order to obtain the value of the primal variable z we make use of the relation
z = argmaxz∈Rnp{〈Lx, z〉 − F (z)}, where L = L ⊗ Ip ∈ Rnp × Rnp and L is the Laplacian
matrix of the communication graph G.

open question whether or not similar techniques could be pursued for distributed
optimization problems of the form (1). As we show in [17], the answer to this
question turns out to be positive.
Hence, the main contribution of our paper is the formulation and analysis of the
first robust and distributed restarting-based accelerated dynamics for the solution
of network optimization problems of the form (1). Since our restarting dynam-
ics combine continuous-time and discrete-time dynamics, they are modeled as
set-valued hybrid dynamical systems [18], for which stability, convergence, and
robustness properties can be established using Lyapunov functions and the hybrid
invariance principle. The construction of this hybrid system is not trivial due to the
distributed nature of the system, which allows for multiple discrete-time updates in
the network happening simultaneously in the standard time domain. In contrast
to existing results that use projections or primal-dual approaches, we follow a
complete dual approach that allows us to recast problem (1) as an unconstrained
optimization problem with a suitable Laplacian-dependent structure on the dynam-
ics of the momentum variables [16], see Figure 1. This reformulation, allows us
to establish sufficient graph-dependent restarting conditions for the solution of
the primal problem. To the knowledge of the authors, these are the first restarting
results developed for accelerated distributed optimization algorithms.
We highlight that besides the theoretical contribution to the field of distributed
optimization, applications on different fronts of the applied and theoretical ma-
chine learning, resource allocation and robotics fields may benefit by the usage of
novel distributed and accelerated dynamics, see [19, 20, 21, 22, 23] and references
therein. For example, they can suitably be implemented for the solution of learning
problems involving large amounts of data, which have been proven to benefit from
the flexibilities that the distributed setup brings to the table [24, 25, 26, 27].
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distributed optimization over networks,” Optimization Methods and Software, vol. 0, no. 0,
pp. 1–40, 2020.

[17] D. E. Ochoa, J. I. Poveda, C. A. Uribe, and N. Quijano, “Robust optimization over networks
using distributed restarting of accelerated dynamics,” IEEE Control Systems Letters, vol. 5,
no. 1, pp. 301–306, 2020.

[18] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability,
and Robustness. Princeton University Press, 2012.
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