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1 Broader Impact1

We share the common concern of non-ethical applications of research in machine learning. There is2

also the risk of possible involuntary collateral effects produced by unexpected responses of layers3

such as M6 in unfamiliar scenarios. Nevertheless, these concerns do not yet bare on our work.4

Because of its academic nature, as disclosed by the simple nature of the datasets used, we cannot5

think about real applications as yet. These will certainly require a bigger research effort. Real world6

applications will be based on more involved CNNs architectures, as they ought to be capable of7

performing operations such as image segmentation, object detection, face recognition, etc. in real8

time and under variable brightness conditions. If we are to consider benefits of our work, the most9

immediate is for researchers that are in the look for increased resilience of their models in front of10

brightness variations. Beyond that, we expect that it can be useful for dealing with scenarios in which11

unpredictable large brightness changes occur.12

There are two limitations of our work that have to be mentioned. One is that we found our setup13

works poorly for α > 0.6(255). The other concern is that our implementation is not optimized, which14

is the reason why the timings reported for the M6 architectures were greater than those for the C15

architectures (about 29% for training and 20% for testing).16

2 Background17

Currently, there is no conventional definition for brightness. In fact, image-processing tools employ18

several different brightness measurements [1]. Brightness refers to the overall lightness or darkness19

of the image [2]. In image processing and computer vision, changing brightness of an image is a20

commonly used point transformation (affecting every pixel in an image). In this transformation, the21

value of each pixel is increased by a constant. For a one channel image I = I(x, y) ∈ R (where22

x, y ∈ U , U a region of R2) the relation23

IB(x, y) = min(I(x, y) + α, 255), (1)

where α > 0 is a constant, defines an image IB that is brighter than I , the more so the higher the24

value of α. In Figure 1 we can see an original image B0 and brighter versions Bi (i = 1, 2, 3)25

corresponding to three values of α. In addition, we display the histogram of the four images. Notice26

that the contrast also changes and that pixels with I(x, y) + α ≥ 255 become saturated.27

We have changed the brightness of all datasets using equation 1 implemented in Tensorflow 2.1.28

Figure 2 displays the point transformation from I(x, y) to IB(x, y). We use degradation labels29

Bi, i = 0, 1, 2, 3, where B0 corresponds to α = 0 (solid line in Figure 2), and B1, B2, B3 to30

α = 0.3(255), 0.4(255) and 0.5(255).31
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Figure 1: Upper row: an original image (B0) and three transformations using Equation 1, B1, B2, B3,
where α = 0, 0.3(255), 0.4(255), 0.5(255) respectively. Second row: the histogram of the pixel
values of each image.

Figure 2: Pixel value transformations of I(x, y) for different levels of brightness B0, B1, B2, B3

3 Quaternion monogenic layer32

In §3.1 we review the general notions about the monogenic signal that are used in §3.2 to describe33

M6.34

3.1 Monogenic signal35

We define 1D (resp. 2D) multivectorial signals as C1 maps U → G from an interval U ⊂ R (a region36

U ⊂ R2) into a geometric algebra G (see [3]). For G = R (G = C, G = H) we say that the signal is37

scalar (complex, quaternionic). For technical reasons, we also assume that signals are in L2 (that is,38

the modulus is square-integrable).39

The Riesz-Felsberg transform maps 2D scalar signals to 2D quaternionic signals. Among the signals40

obtained in this way, our interest lies in the (quaternionic) monogenic signals (see [4] for details).41

We use a band-pass monogenic signal IM = IM (x, y) ∈ H associated to an image I = I(x, y) ∈ R42

(where x, y ∈ U , U a region of R2). The definition of the band-pass IM is as follows:43

IM = I ′ + IR, IR = iI1 + jI2, (2)

where, I ′ = g ∗ I , ∗ is the convolution operator, g = g(x, y) is a radial (isotropic) bandpass (Log-44

Gabor function), the signals I1 and I2 are the Riesz transforms (with quadrature filters ) of I ′ in the x45

and y directions [4]. Note that IM ∈ 〈1, i, j〉 ⊂ H. Rewriting equations in Fourier domain we have:46

IM = F−1(J ′ + JR), JR = iJ1 + jJ2, (3)
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where47

J ′ = J ·G, J1 = J ·H1 ·G, J2 = J ·H2 ·G,

J [u1, u2] =
∑
m1

∑
m2

I[m1,m2]e−i2π(u1m1+u2m2) (4)

H1(u1, u2) =
u1√
u21 + u22

, (5)

H2(u1, u2) =
u2√
u21 + u22

, (6)

G(u1, u2) = exp

−
log

(√
u2
1+u

2
2

ωs
0

)2

2 log(σ)2

 , (7)

ωs0 =
1

minw fs−1
(8)

where u1, u2 are frequency components, J is 2D Fourier transform F of I , minwl is the minimum48

wavelength, f is a scale factor, s = 1, 2, . . . , ns is the current scale.49

The local amplitude signal |IM | is defined by |IM |(x, y) = |IM (x, y)|, where the last expression is50

the modulus of the quaternion IM (x, y) [4]. Notice that we have51

|IM | =
√
I ′2 + I2R, (9)

similarly |IR| =
√
I21 + I22 . The local phase Iφ and the local orientation Iθ associated to I are52

defined, following [4], by the relations53

Iφ = atan2

(
I ′

|IR|

)
, (10)

Iθ = atan

(
−I2
I1

)
, (11)

where the quotients of signals are taken point-wise. For the geometric interpretation of these signals54

see Figure 3.55
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Figure 3: Geometry of the monogenic signal.

3.2 Monogenic layer56

The monogenic layer M6 (cf. [5]) is best described by the scheme in Figure 4, where 1 in the HSV57

representation is a ones matrix of [m,n]. The Normalization is defined as58

Normalization(I) =
I(x, y)−min(I(x, y))

max(I(x, y))−min(I(x, y))
, (12)

The (HSV 2RGB) transforms an HSV image into an RGB image according to the standard color-59

naming conventions (see page 304 of [6]). See Figure 5 for an illustration of the M6 components60
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Figure 4: RGBθ and RGBφ are the outputs of the M6 Layer.

of a simple gray image. Remark that RGBφ enhances lines and edges and RGBθ enhances the61

orientation components all over the image. Figure 6 illustrates the six feature maps from image62

example. In Table 1 we present the main characteristics of a conventional CNN layer C and the M663

layer. Note that the M6 is defined in frequency domain as a result we only have 4 parameters in the64

layer.65

Figure 5: Feature maps of M6 from a circle image input I(x, y).

Figure 6: (A) RGB input image. (B) RGBθ and (C) RGBφ are the output feature maps of the M6
layer.

The implementation of M6 has been coded using Tensorflow 2.1 (TF) and Keras [7, 8].66

Appendix 1. Quaternion algebra67

The quaternion algebra H is a four dimensional real vector space with basis 1, i, j,k,68

H = R1⊕Ri⊕Rj ⊕Rk (13)

endowed with the bilinear product (multiplication) defined by Hamilton’s relations, namely69

i2 = j2 = k2 = ijk = −1. (14)

As it is easily seen, these relations imply that70

ij = −ji = k, jk = −kj = i, ki = −ik = j. (15)
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Table 1: Comparison of the main characteristics of a standard convolutional layer C and the M6 layer.

Characteristics/Name C M6
Parameters [k1 × k2 × l] 4

kernel shape k1, k2, l s, σ,minw, f
Convolution domain Space Frequency (Fourier)
Output shape (with input size [m,n], and padding) [m,n, l] [m,n, 6]
Output domain Space Space
Nonlinear function ReLU arctan, arcsin
Layer position Any First hidden
Trainable Yes Yes

The elements of H are named quaternions, and i, j,k, quaternionic units. By definition, a quaternion71

q can be written in a unique way in the form72

q = a+ bi + cj + dk, a, b, c, d ∈ R. (16)
Its conjugate, q̄, is defined as73

q̄ = a− (bi + cj + dk). (17)
Note that (q + q̄)/2 = a, which is called the real part or scalar part of q, and (q − q̄)/2 = q − a =74

bi + cj + dk, the vector part of q. Since the conjugates of i, j,k are −i,−j,−k, the relations (14)75

and (15) imply that the conjugation is an antiautomorphism of H, which means that it is a linear76

automorphism such that qq′ = q̄′q̄. Using Hamilton’s relations again, we easily conclude that77

qq̄ = a2 + b2 + c2 + d2. (18)
This allows to define the modulus of q, |q|, as the unique non-negative real number such that78

|q|2 = qq̄. (19)
Observe that |qq′| = |q||q′|. Indeed, |qq′|2 = qq′qq′ = qq′q̄′q̄ = q|q′|2q̄ = |q|2|q′|2. Finally, for79

q 6= 0, |q| > 0 and q(q̄/|q|2) = 1, which shows that any non-zero quaternion has an inverse and80

therefore that H is a (skew) field.81
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