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Abstract

The interpretation of seismic data is vital for characterizing sediments’ shape in
areas of geological study. In seismic interpretation, deep learning becomes useful
for reducing the dependence on handcrafted facies segmentation geometry and the
time required to study geological areas. This work presents a Deep Neural Network
for Facies Segmentation (DNFS) to obtain state-of-the-art results for seismic facies
segmentation. DNFS is trained using a combination of cross-entropy and Jaccard
loss functions. Our results show that DNFS obtains highly detailed predictions for
seismic facies segmentation using fewer parameters than StNet and U-Net.

1 Introduction

A crucial task in hydrocarbon exploration refers to seismic interpretation, which aims at investigating
the organization of the soil’s rocky layers and identifying regions with structures capable of storing
petroleum and gas [1]. Seismic data is manually interpreted in conventional workflows by human
experts (who mark the transitions between seismic wave reflection patterns in a time-consuming way)
[7], or it is made with auto-tracking tools that identify patterns in the seismic data. A significant
drawback of these tools is that they cannot enhance their results without an interpreter’s direct
interference. To mitigate this problem, we made use of neural networks for segmenting seismic facies
geometries.

The DNFS (Deep Neural Network for Facies Segmentation) proposed in this work is a convolution
neural network based on an encoder-decoder structure. This network can learn essential characteristics
that enable constructing an output image with segmented seismic facies separated by black lines
in white background (Figure 1). DNFS builds upon U-Net [9] and StNet [2] network properties.
We created a dataset on these black lines (there is no dataset widely used for binary segmentation
of seismic facies) and a composite loss function formed by the combination of cross-entropy and
Jaccard loss for training. This function aims to consider the pixels’ spatial class distribution in the
result predictions, which is not attainable using either cross-entropy or Jaccard alone.

To validate DNFS, we performed an extensive experimental evaluation to tune the hyperparameters
and optimize the loss function’s coefficient. Also, we created a specific dataset for segmenting
seismic facies based on binary segmentation. Our results show that DNFS is capable of segmenting
an arbitrary number of seismic facies because it only focuses on the transitions between them.

2 Related Work

An important task within seismic interpretation refers to the analysis of seismic facies [3]. For
assisting this task with deep learning, researchers have been applying CNNs for seismic interpretation
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[10, 13, 5]. Most works focus on a single seismic event, such as salt dome [12, 11, 16], and fault
detection [4, 14, 8]. Other works like [6, 15, 2] used CNNs in an encoder-decoder model for automated
detection and classification of multi-class geologic structure elements. Di et al. [2] presented an
encoder-decoder neural network (called StNet) for segmenting twelve seismic facies geometries.

When different seismic facies need to be segmented simultaneously, segmenting only one seismic
facies at a time is not usually the best choice because the predicted results could not be easily merged.
To avoid trying to target different seismic regions using different classes, even when these locations
are the same, we could train neural networks to focus only on the separating region between adjacent
seismic facies. Thus, the training would be based on binary segmentation, decreasing the number of
neural network parameters.

3 Method and Results

Our problem involves identifying seismic facies in seismic data. We thus created a dataset where
the transitions between seismic facies were exposed through black lines. This characteristic made
our problem a binary-segmentation one. Based on this aspect, we created a neural network (DNFS)
and trained it with the composite loss function shown below, where ψ weighs the importance of
cross-entropy and Jaccard loss in the linear composite function.

Loss = ψ ∗ CrossEntropy + (1− ψ) ∗ Jaccard (1)

As evaluation metrics, we used intersection over union (IoU) and the percentage of correct black pixel
predictions. The architecture of DNFS is composed of features of StNet and U-Net neural networks.
We applied the same smooth transition of feature maps of U-Net and the transpose convolution layers
of StNet on DNFS (on the decoder part). To connect the encoder and decoder parts, instead of using
two layers as is done on StNet and U-Net, only one layer is used in DNFS, which helped decrease the
total number of network parameters.

Figure 1 shows the resulting DNFS architecture. This combination resulted from eighteen experiments
with different neural network configurations (six variations of DNFS, StNet, and U-Net). Each of
them was constructed by scaling the number of filters in the layers; the scale factors were: 4, 8, 16,
32, 64, and 128. We considered the total number of parameters, time training, and the percentage of
correct black pixels for choosing the best neural network.

After training these neural networks with train, validate, and test subsets of the created dataset, we
noted that the total number of parameters varied from 24.917 to 124.164.36, the time training from
five minutes to nine hours, and the percentage of correct black pixels, from 0 to 87%. We chose the
DNFS with multiplier eight among the other networks because it can be used with environments
where there is little memory (it only consumes 3MB) and processing power (it has 341.001 total of
parameters). Moreover, even with DNFS having fewer parameters than StNet (1.505.69) and U-Net
(31.059.085), it could obtain 85.89% of correctly predicted black pixels while StNet obtained 83.3%,
and U-Net, 86.67%.

Based on current results, we hope to provide a neural network capable of being trained in a short time
to be used in the interpretation workflow, reducing the time and effort required to interpret seismic
facies. For enhancing our results, we could use 1x1 convolution on the skip connections and modify
the Equation (1) to further penalize the incorrect prediction of black pixels.

Figure 1: On the left, an example of seismic input image. In the center, the propose DNFS architecture.
On the right, a prediction made by DNFS.
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