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Introduction Privacy-preserving machine learning is critical to the deployment of data-
driven solutions in applications involving sensitive data. Differential privacy (DP)
[DMNSO06] is a de-facto standard for designing algorithms with strong privacy guaran-
tees for individual data. Large-scale industrial deployments — e.g. by Apple [TealZ]], Google
[EPK14] and the US Census Bureau [[Abol8]| - and general purpose DP tools for machine
learning [[ACP19]] and data analysis [HBAL19, WZL*19|] exemplify that existing methods
are well-suited for simple data analysis tasks (e.g. averages, histograms, frequent items)
and batch learning problems where the training data is available beforehand. While these
techniques cover a large number of applications in the central and (non-interactive) local
models, they are often insufficient to tackle machine learning applications involving other
threat models. This includes federated learning problems [KMA*19, [LSTS19] where de-
vices cooperate to learn a joint model while preserving their individual privacy, and, more
generally, interactive learning in the spirit of the reinforcement learning (RL) framework
[SB18].

In this paper we contribute to the study of reinforcement learning from the lens of differ-
ential privacy. We consider sequential decision-making tasks where users interact with an
agent for the duration of a fixed-length episode. At each time-step the current user reveals
a state to the agent, which responds with an appropriate action and receives a reward
generated by the user. Like in standard RL, the goal of the agent is to learn a policy that
maximizes the rewards provided by the users. However, our focus is on situations where
the states and rewards that users provide to the agent might contain sensitive information.
While users might be ready to reveal such information to an agent in order to receive a
service, we assume they want to prevent third parties from making unintended inferences
about their personal data. This includes external parties who might have access to the policy
learned by the agent, as well as malicious users who can probe the agent’s behavior to trigger
actions informed by its interactions with previous users. For example, [PWZ"19] recently
showed how RL policies can be probed to reveal information about the environment where
the agent was trained.

The question we ask in this paper is: how should the learnings an agent can extract from an
episode be balanced against the potential information leakages arising from the behaviors
of the agent that are informed by such learnings? We answer the question by making two
contributions to the analysis of the privacy-utility trade-off in reinforcement learning: (1)
we provide the first privacy-preserving RL algorithm with formal accuracy guarantees,
and (2) we provide lower bounds on the regret and number of sub-optimal episodes for
any differentially private RL algorithm. To measure the privacy provided by episodic
RL algorithms we introduce a notion of episodic joint differential privacy (]DPE under

*Department of Computer Science and Engineering, University of Minnesota. Supported by the
GAANN fellowship from the U.S. Department of Education. Email: vietr002@umn.edu

tNow at DeepMind. Email: borja.balle@gmail.com

FMicrosoft Research, New York, NY. Email: akshaykr@microsoft.com

$School of Computer Science, Carnegie Mellon University. Email: zstevenwu@cmu.edu
5see appendix [A|for formal definition of JDP

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.


mailto:vietr002@umn.edu
mailto:borja.balle@gmail.com
mailto:akshaykr@microsoft.com
mailto:zstevenwu@cmu.edu

continuous observation, a variant of joint differential privacy [KPRUI14] that captures the
potential information leakages discussed above.

Overview of our results. We study reinforcement learning in a fixed-horizon episodic
Markov decision process with S states, A actions, and episodes of length H. We first provide
a meaningful privacy formulation for this general learning problem with a strong relax-
ation of differential privacy: joint differential privacy (JDP) under continual observation,
controlled by a privacy parameter ¢ > 0 (larger ¢ means less privacy). Under this formula-
tion, we give the first known RL sample complexity and regret upper and lower bounds
with formal privacy guarantees. First, we present algorithm [2} Public Upper Confidence
Bound(PUCB), which satisfies e-JDP in addition to two utility guarantees: it finds an a-
% S2AH*
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+ T) , and achieves a regret rate of

optimal policy with a sample complexity of 5(

5(H2 SAT + M) over T episodes. In both of these bounds, the first terms Sﬁlf

and H2VSAT are the non-private sample complexity and regret rates, respectively. The
privacy parameter ¢ only affects the lower order terms — for sufficiently small approximation
a and sufficiently large T, the “cost” of privacy becomes negligible.

We also provide new lower bounds for e-JDP reinforcement learning. Specifically, by
incorporating ideas from existing lower bounds for private learning into constructions of
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hard MDPs, we prove a sample complexity bound of 6( ) and a regret bound

of ﬁ( HSAT + SATH) . As expected, these lower bounds match our upper bounds in the

dominant term (ignoring H and polylogarithmic factors). We also see that necessarily the
utility cost for privacy grows linearly with the state space size, although this does not match
our upper bounds. Closing this gap is an important direction for future work.

The PUCB Algorithm In this section, we introduce the Private Upper Confidence Bound
algorithm (PUCB), a JDP algorithm with both PAC and regret guarantees. The pseudo-
code for PUCB is in algorithm At a high level, the algorithm is a private version
of the UBEV algorithm [DLB17]. UBEV keeps track of three types of event statistics,
7i(s,a,h),7;(s,a,h), iy (s,a,5", h) (see appendix for counters description) to compute a
policy for each round t. These counters don't satisfy JDP, hence we have to use private
versions of these event counters which we denote by 7,7, i1;. We implement each private
counter using the binary mechanism due to [DNPR10,[CSS11]. Since we are adding extra
noise to the counters, our algorithm incurs additional error, however we can bound the
error of each counter as: Yt € [T] : |1;(s,a, h) —1;(s,a,h)| < E, H where 7;, 11; are the count and
release at the beginning of the t-th episode. The guarantee is uniform in (s, 4, /) and also
holds simultaneously for 7"and .

To compute the policy, we define a bonus function Eo‘Jnf(s, a, h) for each (s,a, h) tuple, which

can be decomposed into two parts at(s, a,h) and IE(S, a,h The term ¢;(-) roughly corre-

sponds to the sampling error, while ¢;(-) corresponds to errors introduced by the private
counters. Using this bonus function, we use dynamic programming to compute an opti-
mistic private Q-function in Algorithm[3] The algorithm here is a standard batch Q-learning

update, with conf(-) serving as an optimism bonus. The resulting Q-function, called @J’,
encodes a greedy policy, which we use for the ¢-th episode.

Conclusion In this paper, we provide a JDP algorithm and establish both PAC and regret
utility guarantees for episodic tabular MDPs. Our results show that the utility cost for
privacy is asymptotically negligible in the large accuracy regime. We also establish the first
lower bounds for reinforcement learning with JDP. Beyond the tabular setup considered in
this paper, we believe that designing RL algorithms providing state and reward privacy in
non-tabular settings is a promising direction for future work with considerable potential
for real-world applications.
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A Preliminaries

A.1 Markov Decision Processes

A fixed-horizon Markov decision process (MDP) with time-dependent dynamics can be formalized
as a tuple M = (S, A,R,P,pg,H). S is the state space with cardinality S. A is the action space with
cardinality A. R(sp,ap, h) is the reward distribution on the interval [0,1] with mean r(sy, ay, h). P
is the transition kernel, given time step h, action a; and, state sj, the next state is sampled from
Str1 ~ P(.Isp,ap, h). Let pg be the initial state distribution at the start of each episode, and H be the
number of time steps in an episode.

In our setting, an agent interacts with an MDP by following a (deterministic) policy 7 € I'l, which
maps states s and timestamps h to actions, i.e., 7t(s, h) € A. The value function in time step h € [H] for a
policy 7 is defined as:

H
Z \h_sn]

= r(s,m(s, i), )+ ) Vi (8P ls (s, ), )
s'eS

The expected total reward for policy 1 during an entire episode is:

|n] Ty
=1

The optimal value function is given by V;(s) = maxyery V' (s). Any policy 7 such that V,(s) = V;(s) for
all s € S and h € [H] is called optimal. It achieves the optimal expected total reward p* = max ey p™.

The goal of an RL agent is to learn a near-optimal policy after interacting with an MDP for a finite
number of episodes T. During each episode t € [T] the agent follows a policy 7; informed by previous
interactions, and after the last episode it outputs a final policy 7.

Definition 1. An agent is (a,f)-probably approximately correct (PAC) with sample complexity
f(S,A,H,L log(%)), if with probability at least 1 — g it follows an a-optimal policy 7 such that

ra’

p*—p™ < a except for at most f(S, A, H, a'log(ﬁ )) episodes.
Definition 2. The (expected cumulative) regret of an agent after T episodes is given by

T

Regret(T) = Z(p* -p™),

t=1

where 7t1,... 7t are the policies followed by the agent on each episode.

A.2 Privacyin RL

In some RL application domains such as personalized medical treatments, the sequence of states
and rewards received by a reinforcement learning agent may contain sensitive information. For
example, individual users may interact with an RL agent for the duration of an episode and reveal
sensitive information in order to obtain a service from the agent. This information affects the final
policy produced by the agent, as well as the actions taken by the agent in any subsequent interaction.
Our goal is to prevent damaging inferences about a user’s sensitive information in the context of
the interactive protocol in algorithm [I]summarizing the interactions between an RL agent M and T
distinct users.

Throughout the execution of this protocol the agent observes a collection of T state-reward trajectories
of length H. Each user u; gets to observe the actions chosen by the agent during the t-th episode, as
well as the final policy 7. To preserve the privacy of individual users we enforce a (joint) differential
privacy criterion: upon changing one of the users in the protocol, the information observed by the
other T — 1 participants will not change substantially. This criterion must hold even if the T — 1
participants collude adversarially, by e.g., crafting their states and rewards to induce the agent to
reveal information about the remaining user.

Formally, we write U = (ug,...,uT) to denote a sequence of T users participating in the RL protocol.
Technically speaking a user can be identified with a tree of depth H encoding the state and reward

responses they would give to all the AT possible sequences of actions the agent can choose. During



Algorithm 1: Episodic RL Protocol

Input: Agent M and users uy,...,ur
for t € [T] do
for he [H] do

u; sends state sy) to M

. t
M sends action aL) to uy

u; sends reward r}(lt) to M
end
end
M releases policy 7

the protocol the agent only gets to observe the information along a single root-to-leaf path in each
user’s tree. For any t € [T], we write M_;(U) to denote all the outputs excluding the output for
episode t during the interaction between M and U. This captures all the outputs which might leak
information about the ¢-th user in interactions after the t-th episode, as well as all the outputs from
earlier episodes where other users could be submitting information to the agent adversarially to
condition its interaction with the ¢-th users.

We also say that two user sequences U and U’ are t-neighbors if they only differ in their ¢-th user.

Definition 3. A randomized RL agent M is e-jointly differentially private under continual observation

(JDP) if for all t € [T], all t-neighboring user sequences U, U’, and all events E € AFXT-11 x T we
have

Pr[M_y(U) € E] < ePr[M_(U’) € E] .

This definition extends to the RL setting the one used in [SS18] for designing privacy-preserving
algorithms for linear contextual bandits. The key distinctions is that in our definition each user
interacts with the agent for H time-steps (in bandit problems one usually has H = 1), and we also
allow the agent to release the learned policy at the end of the learning process.

Another distinction is that our definition holds for all past and future outputs. In contrast, the
definition of JDP in [SS18]] only captures future episodes; hence, it only protects against collusion
from future users.

To demonstrate that our definition gives a stronger privacy protection, we use a simple example.
Consider an online process that takes as input a stream of binary bits u = (uy,...,ur), where u; € {0, 1}
is the data of user ¢, and on each round t the mechanism outputs the partial sum m(u) = Zle uj.
Then the following trivial mechanism satisfies JDP (in terms of future episodes as in the JDP definition
of [SS18]): First, sample once from the Laplace mechanism & ~ Lap(e) before the rounds begin, and
on each round output #i;(u) = ms(u) + £. Note that the view of any future user t’ > t is #7ip (). Now let
u be a binary stream with user ¢ bit on and let w be identical to u but with user ¢ bit off. Then, by
the differential-privacy guarantee of the Laplace mechanism, a user +’ > t cannot distinguish between
my (u) and 1y (w). Furthermore, any coalition of future users cannot provide more information about
user t. Therefore this simple mechanism satisfies the JDP definition from [SS18].

However, the simple counting mechanism with one round of Laplace noise does not satisfy JDP for
past and future outputs as in our JDP (definition [3). To see why, suppose that user ¢ —1 and user ¢ + 1
collude in the following way: For input u, the view of user t —1 is #1;_1 (#) and the view of user t+1 is
g1 (1). They also know their own data uy_1, us, 1. Then they can recover the data of the t-th user as
follows

t+1 t—1

Mgy () = ttpyy = gy (u) = Mgy () + & =gy —mpy (1) =& = Zui Uyl — Zui = U

i=1 i=1
Remark. 1. would the algorithm leak more info for the returning user? yes, but we could bound using
group privacy. 2. would other users be affected? no, because JDP prevents arbitrary collusion

A.3 Counting Mechanism

The algorithm we describe in the next section maintains a set of counters to keep track of events that
occur when interacting with the MDP. We denote by 7;(s, a, h) the count of visits to state tuple (s, a, h)



Algorithm 2: Private Upper Confidence Bound (PUCB)
Parameters Privacy parameter ¢, target failure probability

Input: Maximum number of episodes T, horizon H, state space S, action space A
e =¢/(3H)
fors,a,s’,heSx AxSx[H]do
| Initialize private counters: 7(s,a, h),7(s, a, h),#(s,a,s’,h) := PC(T, €', B)
end
fort<=1to T do
Private planning: Q; := PrivQ(7, 7,1, ¢)
forh<1toH do
Let s denote the state during step / and episode ¢
Execute a := argmax, Q; (s,a’, h)
Observe r ~ R(s,a,h) and s’ ~ P(.|s,a, h)
Feed r to 7(s,a, h)
Feed 1 to (s, a, h) and i(s,a,s’, h) and 0 to all other counters 7(-,-, h) and (-, -,, h)
end
end

right before episode t, where a € A is the action taken on state s € S and time-step h € [H]. Likewise
(s, a,s’, h) is the count of going from state s to s” after taking actions a before episode t. Finally, we
have the counter 7;(s, a, h) for the total reward received by taking action a on state s and time h before
episode t. Then, on episode t, the counters are sufficient to create an estimate of the MDP dynamics to
construct a policy for episode t. The challenge is that the counters depend on the sequence of states
and actions, which is considered sensitive data in this work. Therefore the algorithm must release
the counts in a privacy-preserving way, and we do this the private counters proposed by [CSS11] and
[DNPR10].

A private counter mechanism takes as input a stream o = (07...,07) € [0, 117 and on any round ¢
releases and approximation of the prefix count c(o)(t) = th-:l o;. In this work we will denote PC as
the binary mechanism of [CSS11]] and [DNPR10] with parameters ¢ and T. This mechanism produces
a monotonically increasing count and satisfies the following accuracy guarantee: Let M :=PC(T, ¢) be
a private counter and c¢(o)(¢) be the true count on episode ¢, then given a stream o, with probability at
least 1 — 8, simultaneously for all 1 <t < T, we have

M(o)(1) ~ el )(8) < = In(1/B)log(T)*">

While the stated bound above holds for a single e-DP counter, our algorithm needs to maintain more
than S2AH many counters. A naive allocation of the privacy budget across all these counters will
require noise with scale polynomially with S,A, and H. However, we will leverage the fact that the
total change across all counters a user can have scales with the length of the episode H, which allows
us to add a much smaller amount of noise that scales linearly in H.



Algorithm 3: PrivQ(7, 7,1, ¢, B)

Input: Private counters 7,7, 11, privacy parameter ¢, target failure probability g
E. = 2Hlog((2SAH + S2AH)(B')™" )log (T)*"?

Vii(s):=0 VseS8

forh— Hto1do

fors,ac Sx.Ado

if 7;(s,a,h) > 2E, then

‘ conf;(s,a,h) = (H + 1)(}2(5, a,h)+ gﬂt(s, a,h)
else

| confy(s,a,h):=H
end

Qu(s,8,h) = =ckops (Fe(s, @, 1) + Lyres Vit ()50, 1)
Qf (s,a,h) := min {H, Q.(s,a, h) + conf (s, a,h)}

end

Viy(s) == max, Qf (s,a,h) VYseS
end
Output: Q;
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