
Model Misspecification in Multiple Weak Supervision

Salva Rühling Cachay
Technical University of Darmstadt
salvaruehling@gmail.com

Benedikt Boecking
Carnegie Mellon University

Artur Dubrawski
Carnegie Mellon University

Abstract

Data programming has proven to be an attractive alternative to costly hand-labeling
of data. In this paradigm, users encode domain knowledge into labeling functions
(LF), heuristics that label a subset of the data noisily and may have complex
dependencies. The effects on test set performance of a downstream classifier caused
by label model misspecification are understudied—presenting a serious knowledge
gap to practitioners, in particular since LF dependencies are frequently ignored. In
this paper, we focus on modeling errors due to structure over-specification. Based
on novel theoretical bounds on the modeling error, we empirically show that this
error can be substantial, even when modeling a seemingly sensible structure.

1 Introduction and Problem setup
In data programming users definem labeling functions (LF) which noisily label subsets of the data [1].
These noisy sources are then modeled to obtain an estimate of the latent true label. In practice, the LF
often exhibit statistical dependencies amongst each other, such as sources operating on the same or
similar input. Defining the correct dependency structure is difficult however, thus a common approach
in popular libraries [2; 3] and related research [4; 5; 6] is to ignore it.

Let (x, y) ∼ D be the true data generating distribution and for simplicity assume that y ∈ {−1, 1}.
As in [1], users provide m LFs λ = λ(x) ∈ {−1, 0, 1}, where 0 means that the LF abstained from
labeling. Following [1], we model the joint distribution of y, λ as a factor graph which allows for
modeling of higher-order dependencies between LFs. More recent weak supervision models and
model fitting approaches often only allow for pairwise correlation dependencies to be modeled [7; 8].
To study model misspecification we compare two label models, pθ for the conditional independent
case and pµ which models higher-order dependencies:

pµ(λ, y) =
1

Zµ
exp

(
µTφ(λ, y)

)
= Z−1µ exp

(
µT1 φ1(λ, y) + µT2 φ2(λ, y)

)
, µ ∈ Rm+M (1)

pθ(λ, y) = Z−1θ exp
(
θTφ1(λ, y)

)
, θ ∈ Rm, (2)

where φ1(λ, y) = λy are the accuracy factors, φ2(·) are arbitrary, higher-order dependencies and
Z−1θ , Z−1µ are normalization constants. We assume w.l.o.g. that factors are bounded ≤ 1. Finally, we
extend [1] by introducing negated, bolstering, priority dependencies (definitions in the appendix), e.g.
the latter encoding the notion that one LF’s vote should be prioritized over the one from a noisier LF.

Bound on the probabilistic label difference due to model misspecification We now state our
bound on the probabilistic label difference (which we prove in the appendix):

|pµ(y |λ)− pθ(y |λ)| ≤
1

2
||µ1 − θ||1 +

1

4
||µ2||1 (3)

The bound naturally involves the accuracy parameter estimation error ||µ1 − θ||1 and the learned
strength of the dependencies only modeled in pµ. This is an important quantity of interest since the
probabilistic labels are used to train a downstream model. Unsurprisingly then, this quantity reappears
as a main factor controlling the generalization risk, see the proof of theorem 1 in [7]. The presented
bound is tighter than the one from [7], while in addition accounting for model misspecification.
34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



(a) IMDB (0.81) (b) Bias Bios: professor or teacher (0.91)

Figure 1: Modeling more than a handful dependencies (as the ones in Table 1) significantly deteriorates ROC-
AUC downstream performance as compared to simply ignoring them ("No deps"), by up to 4 and 8 points. This
effect intensifies as we model more dependencies. In brackets, the baseline score for the independent model.

2 Experiments
2.0.1 Proxy for finding true dependencies in real datasets
The underlying true structure between two real labeling functions λj , λk is, of course, unknown.
However, by using true training labels (solely for this purpose) together with the observed LF
votes, we can compute resulting factor values for each data point i, to observe empirical strength of
dependency factor l over a training set: vlj,k =

∑
i φ

l(λ(xi)j , λ(xi)k, yi). Sorting dependencies l
according to vlj,k in descending order, we then choose to model the top d dependencies. These are
the dependencies for which the true labels provide the most evidence of being correct.

2.0.2 Downstream model performance deterioration due to structure over-specification
Table 1: The strongest and weakest dependencies for the IMDB LFs

LFj LFk factor type l factor value vlj,k
best great bolstering 801
original bad priority 327
special not special negated 8
bad absolutely horrible reinforcing 7

For the following experiment we use
the IMDB Movie Review Sentiment
dataset consisting of n = 25k train-
ing and test samples each [9] and
manually select a set ofm = 135 sen-
sible LFs that label on the presence
of a single word or a pair of words
(i.e. uni-/bi-gram LFs). In addition
we use the Bias in Bios dataset [10]
from which we create a binary classification task to distinguish the frequently occurring occupations
professor or teacher (n = 12294,m = 85). We deliberately choose unigram and bigram LFs so as to
create dependencies we expect to help with downstream model performance.

We choose different d ∈ {1, 3, 5, . . . , 40} and then model the strongest ≤ d dependencies of each
factor l according to vl. An example of the strongest and weakest dependencies for the IMDB dataset
is shown in Table 1. For the Bias in Bios experiment, an example of a strong reinforcing dependency
is that the term ‘phd’ appears in addition to the term ‘university’. We report the test set performance
of a simple 3-layer neural network trained on the probabilistic labels, averaged out over 100 runs.
While for IMDB we observe a marginal boost (< 0.005) in performance when modeling the strongest
d = 1, 3 dependencies of each factor (5, 15 in total), the main take-away is the following:

We find that modeling more than a handful of dependencies significantly deteriorates the downstream
end classifier performance (by up to 8 ROC-AUC points) as compared to simply ignoring them
(Fig. 1). The performance worsens as we increase d, i.e. as we model more, slightly weaker,
dependencies. We reiterate that these additional dependencies still, semantically, make sense (as
depicted in Table 1, where the weakest ones are modeled only for the case where the total number of
dependencies = 122).

Discussion Even though this result and insight is highly relevant for practitioners, it has, to the best
of our knowledge, not been explored in detail. It may come as a surprise that modeling seemingly
sensible dependencies can significantly deteriorate the targeted downstream model performance. We
hypothesize that this is due to the true model being close to the conditionally independent case and in
Eq. 3 we see that the bound becomes looser as more incorrect dependencies are modeled. Also, as
[8] briefly note, more complex models often suffer of a higher sample complexity. We can conclude
from this that ignoring potential dependencies will often be a reasonable baseline for practitioners.

2



References
[1] A. Ratner, C. De Sa, S. Wu, D. Selsam, and C. Ré, “Data programming: Creating large training

sets, quickly,” Advances in neural information processing systems, vol. 29, 05 2016.

[2] S. H. Bach, D. Rodriguez, Y. Liu, C. Luo, H. Shao, C. Xia, S. Sen, A. Ratner, B. Hancock,
H. Alborzi, R. Kuchhal, C. Ré, and R. Malkin, “Snorkel drybell: A case study in deploying
weak supervision at industrial scale,” in Proceedings of the 2019 International Conference on
Management of Data, ser. SIGMOD ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 362–375.

[3] A. Ratner, S. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel: rapid training data
creation with weak supervision,” The VLDB Journal, vol. 29, 07 2019.

[4] P. Varma and C. Ré, “Snuba: Automating weak supervision to label training data,” in Proceed-
ings of the VLDB Endowment. International Conference on Very Large Data Bases, vol. 12,
no. 3. NIH Public Access, 2018, p. 223.

[5] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor decompositions for
learning latent variable models,” Journal of Machine Learning Research, vol. 15, pp. 2773–2832,
2014.

[6] A. P. Dawid and A. M. Skene, “Maximum likelihood estimation of observer error-rates using
the em algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28,
no. 1, pp. 20–28, 1979.

[7] A. Ratner, B. Hancock, J. Dunnmon, F. Sala, S. Pandey, and C. Ré, “Training complex models
with multi-task weak supervision,” Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 33, pp. 4763–4771, 07 2019.

[8] D. Y. Fu, M. F. Chen, F. Sala, S. Hooper, K. Fatahalian, and C. Ré, “Fast and three-rious:
Speeding up weak supervision with triplet methods,” ICML, 2020.

[9] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word
vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies. Portland, Oregon, USA:
Association for Computational Linguistics, Jun. 2011, pp. 142–150.

[10] M. De-Arteaga, A. Romanov, H. Wallach, J. Chayes, C. Borgs, A. Chouldechova, S. Geyik,
K. Kenthapadi, and A. T. Kalai, “Bias in bios: A case study of semantic representation bias
in a high-stakes setting,” in Proceedings of the Conference on Fairness, Accountability, and
Transparency, 2019, pp. 120–128.

3



3 Appendix

3.1 Problem setup recap

Let (x, y) ∼ D be the true data generating distribution and for simplicity assume that y ∈ Y =
{−1, 1}. Users provide m labeling functions (LFs) λ = λ(x) ∈ {−1, 0, 1}, where 0 means that the
LF abstained from labeling. We compare two label models, pθ for the conditional independent case,
and pµ which models higher-order dependencies:

pµ(λ, y) =
1

Zµ
exp

(
µTφ(λ, y)

)
= Z−1µ exp

(
µT1 φ1(λ, y) + µT2 φ2(λ, y)

)
, µ ∈ Rm+M (4)

pθ(λ, y) = Z−1θ exp
(
θTφ1(λ, y)

)
, θ ∈ Rm, (5)

where φ1(λ, y) = λy are the accuracy factors, φ2(·) are arbitrary, higher-order dependencies and
Z−1θ , Z−1µ are normalization constants. We assume w.l.o.g. that factors are bounded ≤ 1.

3.2 Proof of the bound

Bound Our bound on the probabilistic label difference between the two models above is:

|pµ(y |λ)− pθ(y |λ)| ≤
1

2
||µ1 − θ||1 +

1

4
||µ2||1 (6)

Proof First note that the posterior of the label models as above can be rewritten as follows:

pµ(y |λ) =
pµ(λ, y)

pµ(λ)
=

pµ(λ, y)∑
ỹ∈Y pµ(λ, ỹ)

=
Z−1µ exp

(
µTφ(λ, y)

)∑
ỹ∈Y Z

−1
µ exp (µTφ(λ, ỹ))

=
exp

(
µTφ(λ, y)

)∑
ỹ∈Y exp (µ

Tφ(λ, ỹ))

=
exp

(
µTφ(λ, y)

)
exp (µTφ(λ, y)) + exp (µTφ(λ,−y))

=
1

1 + exp (µT (φ(λ,−y)− φ(λ, y)))
= σ

(
µT (φ(λ, y)− φ(λ,−y))

)
= σ

(
2µT1 φ1(λ, y) + µT2 (φ2(λ, y)− φ2(λ,−y))

)
,

where σ(x) = 1
1+exp(−x) is the sigmoid function and we used the fact that the accuracy factors are

odd functions, i.e. φ1(λ,−y) = −λy = −φ1(λ, y). Analogously, pθ(y |λ) = σ
(
2θTφ1(λ, y)

)
.

Therefore we have that
|pµ(y |λ)− pθ(y |λ)| =

∣∣σ (2µT1 φ1(λ, y) + µT2 (φ2(λ, y)− φ2(λ,−y))
)
− σ

(
2θTφ1(λ, y)

)∣∣
By the mean value theorem it follows that for some c between the arguments of σ above

= σ′(c)
∣∣(2µT1 φ1(λ, y) + µT2 (φ2(λ, y)− φ2(λ,−y))

)
− 2θTφ1(λ, y)

∣∣
= σ′(c)

∣∣∣2 (µ1 − θ)T φ1(λ, y) + µT2 (φ2(λ, y)− φ2(λ,−y))
∣∣∣

Using the triangle inequality and the fact that maxx σ
′(x) = maxx σ(x)(1 − σ(x)) = 1

4 , we can
now bound this expression as follows

≤ 1

2

∣∣∣(µ1 − θ)T φ1(λ, y)
∣∣∣+ 1

4

∣∣µT2 (φ2(λ, y)− φ2(λ,−y))
∣∣

finally, since the defined higher-order dependencies are indicator functions 6= 0 for only one y ∈ Y ,
and if ||q||∞ ≤ 1 then |xT q| = |

∑
i xiqi| ≤

∑
i |xiqi| ≤

∑
i |xi| = ||x||1, this reduces to

≤ 1

2
||µ1 − θ||1 +

1

4
||µ2||1.

4



3.3 Factor Definitions

We supplement the factor definitions of the used higher-order dependencies (the first two stem from
[1], the rest we defined ourselves for the conducted experiments). Whenever a factor φj,k(λ, y) is not
symmetric (all factors, besides bolstering), we define it so that LFk acts on (e.g. negates) LFj .
For the fixing dependency we have:

φFixj,k (λ, y) =


+1 if λj = −y ∧ λk = y

−1 if λj = 0 ∧ λk 6= 0

0 otherwise

for the reinforcing one:

φReij,k (λ, y) =


+1 if λj = λk = y

−1 if λj = 0 ∧ λk 6= 0

0 otherwise

for the priority factor:

φPrij,k (λ, y) =


+1 if λj = −y ∧ λk = y

−1 if λj = y ∧ λk = −y
0 otherwise

for the bolstering:

φBolj,k (λ, y) =


+1 if λj = λk = y

−1 if λj = λk 6= y ∨ λj = −λk 6= 0

0 otherwise

and, finally, for the negated factor:

φNegj,k (λ, y) =


+1 if λj = −y ∧ λk = y

−1 if (λj = y ∧ λk = −y) ∨ λj = λk 6= 0

0 otherwise

5


	Introduction and Problem setup
	Experiments
	Proxy for finding true dependencies in real datasets
	Downstream model performance deterioration due to structure over-specification


	Appendix
	Problem setup recap
	Proof of the bound
	Factor Definitions


