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Abstract

We consider the model of cooperative learning via distributed non-Bayesian learn-
ing, where a network of agents tries to jointly agree on a hypothesis that best
described a sequence of locally available observations. Building upon recently
proposed weak communication network models, we propose a robust cooperative
learning rule that allows asynchronous communications, message delays, unpre-
dictable message losses, and directed communication among nodes.

1 Robust Asynchronous Cooperative Learning: Algorithm and Main Result

Distributed inference has gained increasing attention in recent years due to the numerous applications
in machine learning, sensor networks, decentralized control, and distributed signal processing. Among
distributed inference models, non-Bayesian social learning has emerged as an essential approach to
deal with decentralized heterogeneous learning over networks [3, 5]. Non-Bayesian learning exhibits
strong theoretical performance and allows large classes of sensing modalities and communication
constraints. The non-Bayesian learning model assumes that the network of agents tries to agree
on a set of beliefs about the state of the world that best describes a sequence of local observations
from a finite set of possible states [3, 5, 4, 7, 6]. In this work, we build upon recently available
results in distributed optimization considering asynchrony, delays, and message losses [10, 9, 2, 1],
and introduce a cooperative distributed non-Bayesian learning algorithm with robust performance
guarantees under such harsh communication network conditions. In particular, we extend the recent
proposed Robust Asynchronous Push-Sum (RAPS) consensus algorithm [8] to the distributed learning
setup. Consider a network of n agents on a set of nodes V = {1, 2, . . . , n} observing realizations of
a finite, stationary, independent, identically distributed random processes {Xk}k≥1 where Xi

k ∼ P i
at each iteration time k with unknown distribution P i. Additionally, all agents have a shared finite
set of hypotheses Θ = {θ1, θ2, . . . , θm}, from which each agent i ∈ V defines a local family of
distributions Pi = {P iθ | θ ∈ Θ}. We will assume the technical condition that each element in
family of distributions Pi is absolutely continuous with respect to P i. We denote N+

i and N−i as
the set of out-neighbors and in-neighbors of an agent i. The objective of the network of agents is to
agree on a parameter θ∗ ∈ Θ such that the joint distribution

∏
P iθ∗ is closest to

∏
P i. Formally, the

group of agents tries to solve jointly: minθ∈Θ F (θ) ,
∑
i∈V DKL(P i‖P iθ), where DKL(P‖Q) is

the Kullback-Leibler divergence between the distributions P and Q. Importantly, note that each of the
agents only knows its local family of distributions Pi, the true distribution of their local observations
P i is unknown, yet accessible via local observations. Thus, in order to solve problem cooperation is
needed.
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We will generally denote the set of minimizers as Θ∗. The confidence each agent has on each of
the hypotheses in Θ is represented by a belief vector, denoted as µθi (k), which indicates the belief
that an agent i ∈ V has about a hypothesis θ ∈ Θ at certain time instant k. A value of µθi (k) = 1
indicates certainty that the minimizer is θ, whereas µθi (k) = 0 indicates certainty that it is not. Agents
cooperate by communicating their beliefs at each time instant. Such communication is mediated
by a network, modeled as a graph G = {V,E}. We assume that the graph G is strongly connected
and does not have self-loops, the delays on each link are bounded above by some Ldel ≥ 1, every
agent wakes up and performs updates at least every Lu ≥ 1 iterations, each link fails at most Lf ≥ 1
consecutive times, and messages arrive in the order of time they were sent. We state Algorithm 1, our
proposed cooperative learning algorithm, and state our main results.

Algorithm 1 Robust Asynchronous Push-Sum Distributed Non-
Bayesian Learning

1: Initialize: yi(0) = 1, φyi (0) = 0, φµi,θ(0) = 1, ∀i ∈ V ,
and ρyij(0) = 0, κij(0) = 0,∀(i, j) ∈ E

2: Set initial beliefs as uniform for all agents.
3: for k = 0, 1, 2, . . . , for every node i: do
4: if Node i wakes up then

1. Processing and broadcasting local information
5: κi ← k, φyi ← φyi + yi/(d

+
i + 1)

6: φµ(i,θ) ← φµ(i,θ)

(
µθi

)yi/(d+i +1)

7: Node i broadcasts (φyi , φ
µ
(j,θ), κi) to N+

i .
2. Processing received messages

8: for (φyj , φ
µ
(i,θ), κ

′
j) in the inbox do

9: if κ′j > κij then
10: ρ∗yij ← φyj , ρ∗µij|θ ← φµ(j,θ), κij ← κ′j
11: end if
12: end for

3. Updating beliefs and local information
13: ŷi ← yi

d+i +1
+

∑
j∈N−i

(ρ∗yij − ρ
y
ij)

14: µθi ← 1
Zi

((
µθi

) yi

d
+
i

+1
∏

j∈N−i

(
ρ∗µ
ij|θ
ρµ
ij|θ

)
P iθ(x

i
k+1)

) 1
ŷi

Zi is a normalization constant.
15: yi ← ŷi, ρ

y
ij ← ρ∗yij , ρµij|θ ← ρ∗µij|θ

16: end if
17: end for

In Algorithm 1, each awake node
executes three main states at ev-
ery iteration. Initially, local vari-
ables are updated with the most
recent information about outgoing
neighbors for each possible hypoth-
esis. This local processing step is
concluded by broadcasting auxil-
iary variables and time-stamps to
its available out-neighbors at that
particular time. Then, each agent
modes on processing the messages
it might have arrived from its in-
neighbors while not awake. Each
agent first checks time-stamps for
each of the messages and updates
the stored neighbor information if
newer information is available. Fi-
nally, the node updates its beliefs
with the most recent information
from its neighbors, and its local ob-
servation of the random variable
Xi
k, and goes back into sleep mode.

This process repeats at each itera-
tion. We show that the learning
dynamics proposed in Algorithm 1
guarantees that the beliefs of all
agents will concentrate in the set
of minimizers of F (θ), denoted as
Θ∗. Additionally, the concentra-
tion rate is network-independent,
in the sense that as the connectiv-
ity assumptions holds, the concen-
tration rate will not depend on the

specific network topology.

Theorem 1 (Main Result) Let assumptions about the connectivity of the communication network
hold. Then, the output of Algorithm 1 has the following property:

lim
k→∞

1

k
log

µiθv (k)

µiθw (k)
≤ − 1

n
min
θ/∈Θ∗

(F (θ)− F (θ∗)) (1)

almost surely for all θv /∈ Θ∗, and θw ∈ Θ∗, and i ∈ V .

Theorem 1 states that for all non-optimal hypothesis, the beliefs will decay asymptotically expo-
nentially fast. Moreover, the rate at which the beliefs will asymptotically decay is upper bounded
by the averaged optimality gap of the second-best hypothesis. However, the closer (in the sense of
Kullback-Leibler) the optimal and the closest suboptimal hypothesis are, the slower the concentration
will happen.
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