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1 Introduction

Random Graphs were proposed by Erdös and Renyi while using probabilistic methods in order to
study problems in graph theory. A random graph can be thought of as a dynamic object which starts
as a set of vertices and succesive edges are added at random according to some probability law. The
simplest example consist of drawing at random a graph from the space of all graphs in n vertices and
M edges, where each graph has the same probability (Bollobás, 2001). Further models can be found
in complex systems, economics, the study of social networks among others (Jackson, 2010; Newman,
2018)

The concept of Causality deals with regularities found in a given environment (context) which are
stronger than probabilistic (or associative) relations in the sense that a causal relation allows for
evaluating a change in the consequence given a change in the cause. We adopt here the manipulationist
interpretation of Causality (details in Woodward (2003)). The main paradigm is clearly expressed by
Campbell and Cook (1979) as manipulation of a cause will result in a manipulation of the effect.

When doing Bayesian modelling (Bernardo and Smith, 2000; Gelman et al., 2013) one first identifies
the source of the uncertainty; e.g., the parameter of a probability density function which generates
data; then, one specifies a probabilistic model over such uncertainty. Here, we identify as our source
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of uncertainty the existence or not of a causal relationship between a given pair of variables. We will
model such uncertainty as the probability of an edge in a random graph. Our probabilistic model over
the source of uncertainty is to be updated in terms of what is observed from interactions with the
environment and therefore with the true causal mechanism that controls the environment.

2 Methodology

Let a rational agent consider the following set of variables X = {X1, ..., Xn} which are causally
related by some unknown, fixed causal graphical model G; the agent knows that she can only intervene
one variable, and does so in order to alter the value of some identified reward variable; without loss
of generality assume that the agent can only intervene on X1 wishing to affect Xn.

Also, we assume that the agent knows a causal ordering of the variables, which specifies, for some
but not all of the variables, which other variables can not be a cause of it.

Let pij be the belief that the agent has over a causal relation (directed link) existing between the
variable with index i and the variable with index j. This is, the decision maker has belief pij ∈ [0, 1]
that Xi → Xj . Let G an initial random graph formed as follows: the node set is N = {1, ..., n}
and a there exists a link between i and j with probability pij . Now, make an intervention a∗ over
the possible values that X1 can take within the resulting graph G. The action is taken, and a full
realization X1 = x1, ..., Xn = xn is observed.

Next, we update the pij’s using Bayes Theorem: for each pair of indexes i, j we consider the subgraph
containing only 1, i, j, n as nodes, either connected or not, and we ask for the probability of such
graph producing the output (X1 = a∗, Xi = xi, Xj = xj , Xn = xn), which will be used as the
likelihood of data, and as a prior probability we simply use pij , so we have

pt+1
ij ∝ p(X1 = a∗, ..., Xi = xi, ..., Xj = xj , ...Xn = xn|current graph)ptij . (1)

Then, we update the model generating a new graph according to pij .

3 Results

We carried out a series of experiments in which an agent while acting on one variable at a time,
updates its beliefs about the existence of a causal relationship between variables until they converge
to a value that corresponds to whether the connection exists or not. Specifically, we examined the
hypothetical example proposed by Gonzalez-Soto et al. (2018). Consider a patient who can have
one of two possible diseases. A doctor can treat the disease with either treatment A or treatment B,
both of which carry some risk. Whether a patient is cured or not depends on the disease, the given
treatment, and a possible negative reaction that the latter may have on the subject. We propose to
mimic the physician-patient interaction with an agent interacting with an environment that is ruled by
a causal model. Figure 1 shows the structure of the causal model.

diseaselives

reaction

treatment

Figure 1: Causal structure underlying the disease-treatment problem.

We compare three algorithms each one has a different action selection policy. The first uses a random
policy, and the two remain, use an ε-greedy strategy starting with a high probability of explore and
decaying the exploration rate until the agent only selects the optimal action. Figure 2 shows how the
beliefs evolve when doing different interventions. In general, it is achieved what was expected, i.e. all
the true relationships are learned. After a a few interventions, the system learns the causal model and
at the same time learns in choose the best treatment. This gives a plus to other associative schemes.

To measure the performance of our algorithm we wish to know how different is the ground truth
defined in Figure 1 and the beliefs. We use the l2 norm, the Hamming distance, and the accuracy
where we compare the values of the beliefs with the true edges. The first three plots of Figure 3
evidence that random actions are better to find the true causal relationships. On the other hand, we
can see that policy using a fast decay of the exploration rate, outperforms the rest of the methods and
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is very similar to the Q-learning algorithm, a classical reinforcement learning method which is purely
associative, with the same action selection scheme. However, our approach learns to choose from
causal mechanisms of the world.
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(a) Random policy.
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(b) ε w/ exponential decay.
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(c) ε w/ linear decay.

Figure 2: Average beliefs pij over 50 rounds and 10 experiments.

0 10 20 30 40 50

0.4

0.6

0.8

1.0

1.2

Random
Exponential decay
Linear decay

(a) l2 loss
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(b) Hamming loss
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(c) Accuracy
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Figure 3: Evaluation metrics per interaction round over 50 rounds and 10 experiments.
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