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Abstract

We present a novel method for the automatic georeferencing of heterogeneous map
images based on the analysis of the spatial relationships between their lines of text
and the geographical locations they depict. Our approach differs from previous
work in that the only input provided is the raster image, as it does not require
additional hints or metadata. The method is also designed to be highly tolerant of
maps with different art styles, scales, orientations, and cartographic projections. To
accomplish this task, we leverage the power of modern OCR (Optical Character
Recognition) and geocoding services to generate a series of candidate ground
control points (GCP) and then discriminate between them using a combination of
clustering algorithms and graph analysis. Experimental results for 359 map images
demonstrate the viability of the proposed method. We achieved a precision ranging
from 81.19% to 97.56% and a recall from 55.71% to 71.15%.

1 Introduction

The process of georeferencing, which means aligning digitized maps with their geographical coor-
dinates, is a difficult and time-consuming task [10] [12] [13]. It is generally accepted that the level
of understanding necessary to georeference an image correctly can be rather daunting [1] [4]. Over
the last decades, there have been advances in the automatic georeferencing of map images and aerial
photographs [5], [7], [12], [6]. However, there has been little discussion on developing methods that
can deal with heterogeneous maps. For instance, some algorithms apply fixed image processing
techniques to find features and match them with geographical databases [12] [5]. The drawback
of these approaches is that such image processing may not work for other styles of images. Other
techniques only work with specific kinds of images like street maps [7] or aerial photographs [12].
Finally, historical or contemporary illustrated maps may suffer from distortion or unusual perspectives
or projections that can make the match with precise geographical information considerably harder to
achieve [4] [8].

2 Our Method

The proposed method contains four modules, as shown in Figure 1. The only input by the user is the
raster image, and the output is the georeference information or null if it could not be found.

2.1 Creation of Candidate Ground Control Points (GCP)

The OCR module obtains text annotations and sends them to the next module to be queried in a
geocoding service that converts location names into geographic coordinates. The results of both
are joined to create a series of ground control points (GCP). Each GCP is a match between the
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Figure 1: Overview of the architecture of the proposed method

coordinates (X,Y ) of a point in the map image and the (Longitude, Latitude) coordinates of the
location on earth the point is depicting.

2.2 Discrimination of Candidate GCP using unsupervised learning and graph analysis

The list of candidate GCP certainly contains spurious elements caused by the natural ambiguity of
place and landmark names [11] and OCR or geocoding inaccuracies [14]. The third module analyzes
the relationships between pairs and clusters of GCP to find uniform groups. The distance between
each possible pair of GCP is expressed in two components: scale (meters per pixel) and the difference
in orientation (angle they form). Agglomerative hierarchical clustering (AHC) ([9], [16]) is used to
cluster these distances in groups with low variance in scale and orientation. To obtain a group of
GCP from clusters of distances, a connection graph is created, and the maximum clique of this graph
is calculated ([3], [2]). Each clique is a set of GCP in which all their distances have similar values
of scale and orientation. It is expected that larger cliques and lower variances increase the chance
of having found correct georeference information. The final module calculates the bounding box
(NW and SE) and the orientation of the map using the best clique of GCP and the map dimensions in
pixels. If no clique of a minimum size (defined as hyper-parameter) was found, the result is null.

3 Results

Table 1: Results for 359 maps with different values of the minimum accepted sizes of GCP clique

Minimum Size of the Selected Clique 3 GCP 4 GCP 5 GCP 6 GCP
Georeference Information Found 319 265 226 205
Correct Information (IoU >= 0.20) 259 242 219 200
Incorrect Information (IoU < 0.20) 60 23 7 5
Precision 81.19% 91.32% 96.90% 97.56%
Recall 71.15% 67.41% 61% 55.71%

A data set of 359 pictorial, historical, and hand-drawn maps provided by Stroly Inc. [15] was used
for the computer experiments. The images were manually georeferenced by a human expert, and
this bounding box is used as ground truth and compared with the prediction by the presented method.
In order to calculate the Intersection over Union (IoU ), both bounding boxes were converted into a
projected coordinate system. The result is considered correct when the IoU with the ground truth
is IoU >= 0.20. Table 1 shows the results of four runs of the method, each with a different value
of the hyperparameter minimum size of the selected clique of GCP. In all cases, the only
input was the raster image.

4 Conclusion

We developed a novel solution to georeference heterogeneous map images with no need for additional
input from the user, hand-crafted image processing, nor access to special geographical databases.
Our experiments have proven that even with small but carefully calculated sets of GCP, the precision
achieved is greater than 80%, and it can reach almost 98% for larger sets.

The method showed limitations in cases where the text found on the map is sparse or difficult to
be recognized by OCR. Similar shortcomings were encountered on maps where the text content or
position within the image does not match the geographical locations depicted.
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Broader Impact

This section will describe a couple of scenarios in which we believe the proposed method could be
applied.

In the first one, an implementation could be executed in batch for large collections of map images
without georeference information. Such map collections are usually found in museums, libraries, or
universities. In this scenario, it would be possible to obtain important statistics about the maps in
the collection. These statistics include the scale and orientation of the maps, as well as the countries,
regions, or territories they depict. This information would increase the cultural value of each map and
of the collection as a whole. Additionally, as we have described in this work, the batch processing
could be achieved with no additional input from the user and in a time and resource-efficient manner.

In the second scenario, the proposed method could be executed individually in the context of a web
system similar to the one described in [15]. In such systems, users can upload their own maps and
manually perform the georeferencing using web tools. The inclusion of this tool in the workflow
could dramatically improve the user experience with the automatic or semi-automatic creation of
ground control points. This is especially true because a great percentage of the users of such websites
are not experts in geographical information tools or systems. Additionally, if the use case requires
professional-level georeferencing, the GCP and the geographical bounding box returned by this tool
would be a starting point to significantly speed up the process.
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A A visualization of the results and comparison with the ground truth

This section presents some examples of successful and unsuccessful results obtained by executing the
proposed method for the data set of 359 map images discussed in the results section.

Figure 2 shows the visualization of the predictions obtained for maps with different styles and how
this prediction compares with the ground truth. In each of the four cases, the input image is shown
on the left side, and the ground truth and results are plotted over a web map on the right side. The
predicted bounding box is plotted on blue, while the ground truth (georeferenced by a human expert)
is plotted on red. The GCP selected in the best clique are numbered and drawn on both sides in a
white square with a red outline. On the left side each GCP is located in the (X,Y ) coordinates of the
text annotation on the raster image. On the right side, they are drawn on the (Longitude, Latitude)
returned by the geocoding service. We can see how the match (or IoU ) between the prediction and
the ground truth is better for larger cliques of GCP.

Figure 2: Examples of successful results (IoU with ground truth >= 0.20) of the proposed method.
Top-left: JTB, Top-right: Globe-trotter (CC-BY-SA3.0), Bottom-left: Suiko, Hagiwara Yoshiki
Office, Bottom-right: Maizuru City.

Figure 3 shows some examples of map images for which the method could not find a bounding box.
In most cases, this is because there is not enough text, or it is difficult to be recognized by current
OCR methods. In other instances, the text may not include the current name of real locations on earth,
or it may not be placed on the (X,Y ) coordinates of the location it is depicting.
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Figure 3: Examples of non-successful results (no bounding box predicted) of the proposed method.
From left to right: Sendai Station East Area Management Council, Ritsumeikan University, mapping
prun design workshop B-team, public domain.

B Implementation Details

B.1 Technological considerations

In this work, we outline a method with a series of steps that are independent of the underlying
technology used to achieve them. For instance, the OCR step can be performed by any program that
is able to return the precise coordinates (X,Y ) of each text annotation. This includes open-source
alternatives such as Tesseract OCR1 or commercial ones like Google Vision API2. The geocoding step
can also be done with open-source and open-data alternatives, such as OpenStreetMap’s Nominatim3

or its commercial alternative, MapQuest4. In the same manner, the clustering and graph analysis can
be easily performed using scientific open-source packages.

B.2 Execution time

The time necessary to execute the method for a single map heavily depends on the characteristics of
the image and the underlying technologies used to achieve each step. For instance, while the OCR
step usually takes just a few seconds, the geocoding of all the text annotation can take several minutes.
This is especially true if the used geocoding service does not allow querying all the annotations at
the same time. To overcome this possible problem, we have developed a fork5 of OpenStreetMap’s
Nominatim to allow the batch geocoding of any number of lines of text with a single HTTP request.

Using batch geocoding and other optimizations outside of the scope of the current document, we have
created an implementation in which each map image takes an average of 6 seconds, with a maximum
of 31 seconds and a minimum of 0.9 seconds. The system was tested on an Amazon AWS lambda6

serverless architecture.

1https://github.com/tesseract-ocr/tesseract
2https://cloud.google.com/vision
3https://nominatim.org/ (Note: bulk geocoding on OpenStreetMap’s instance is against the usage policy)
4https://developer.mapquest.com/
5https://github.com/StrolyCom/Nominatim/tree/high_performance_batch
6https://aws.amazon.com/lambda/
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