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Abstract

Reward Machines (RMs), originally proposed for specifying problems in Rein-1

forcement Learning (RL), provide a structured, automata-based representation of a2

reward function that allows an agent to decompose problems into subproblems that3

can be efficiently learned. In this work, we show that RMs can be learned from4

experience, instead of being specified by the user, and that the resulting problem5

decomposition can be used to effectively solve partially observable RL problems.6

1 Motivation and Research Problem7

The use of neural networks for function approximation has led to many recent advances in Rein-8

forcement Learning (RL). Such deep RL methods have allowed agents to learn effective policies9

in many complex environments including board games [9], video games [5], and robotic systems10

[1]. However, RL methods (including deep RL) often struggle when the environment is partially11

observable. This is because agents in such environments usually require some form of memory to12

learn optimal behaviour [10]. Recent approaches for giving memory to an RL agent either rely on13

recurrent neural networks [6, 3, 13, 8] or memory-augmented neural networks [7, 4].14

2 Technical Contribution: On Reward Machines and How to Learn Them15
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(b) Perfect RM.

Figure 1: A partially observable environment and a RM.

In this work, we show that Reward Ma-16

chines (RMs) [11] are another useful17

tool for providing memory in a partially18

observable environment. We propose19

a method for learning an RM directly20

from experience in a partially observ-21

able environment, in a manner that al-22

lows the RM to serve as memory for an23

RL agent. To ground this discussion,24

consider the following problem:25

Example 2.1 (The cookie domain). The cookie domain, shown in Figure 1a, has three rooms26

connected by a hallway. The agent (purple triangle) can move in the four cardinal directions. There27

is a button in the yellow room that, when pressed, causes a cookie to randomly appear in the red or28

blue room (unless the environment already contains a cookie, in which case it gets randomly moved to29

the red or blue room). There is no cookie at the beginning of the episode. The agent receives a reward30

of +1 for each time it reaches a cookie (which removes the cookie). This is a partially observable31

environment since the agent can only see what it is in the room that it is currently in.32

RMs decompose problems into a set of high-level states U and define how to transition from one33

RM state to another using if-like conditions. These conditions are over a set of binary properties34
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Figure 2: Total reward collected every 10, 000 training steps.

P that the agent can detect from the current observation. For example, in the cookie domain,35

P = { , , , , , , }. These properties are true in the following situations: , , , or is36

true if the agent is in a room of that color; is true if the agent is in the same room as a cookie; is37

true if the agent just pushed the button; and is true if the agent just ate a cookie.38

Figure 1b shows a possible RM for the cookie domain. It has an initial state u0. The edge labels39

provide a visual representation of the state-transition and reward-transition functions of the RM. For40

example, label 〈 , 1〉 between state u2 and u0 represents that if the RM is in state u2 and the agent41

just ate a cookie in room , then the agent will receive a reward of 1 and the RM will transition42

to u0. Any properties not listed in the label are false. We also use multiple labels separated by a43

semicolon to describe different conditions for transitioning and the label “o/w” stands for “otherwise.”44

When learning a policy for a given RM, one simple technique is to learn a policy π(a|o, u) that45

considers the current observation o ∈ O and the current RM state u ∈ U when selecting the next46

action a ∈ A. Interestingly, a partially observable problem might be non-Markovian over O, but47

Markovian over O × U for some RM. To learn RMs, our overall idea is to search for an RM that48

can be effectively used as external memory by an agent. This is an RM that remembers sufficient49

information about the history to make accurate Markovian predictions about the next observation.50

The RM in Figure 1b is perfect w.r.t. this criterion. Intuitively, every transition in the cookie domain51

is Markovian except for transitioning from one room to another. Depending on different factors, when52

entering to the red room there could be a cookie there (or not). This RM encodes such information53

using 4 states, where u0 represents the state where the agent knows that there is no cookie, at u1 the54

agent knows that there is a cookie in the blue or the red room, at u2 the agent knows that there is55

a cookie in the red room, and at u3 the agent knows that there is a cookie in the blue room. Since56

keeping track of more information will not result in better predictions, this RM is perfect.57

We formalized the problem of learning a perfect RM as a discrete optimization problem which, given58

a set of traces and detectors for the symbols in P , returns a perfect RM (under certain conditions). In59

our experiments, we solved the discrete optimization problem using Tabu search [2].60

3 Experimental Results61

We tested our approach on two partially observable grid environments. The first environment is the62

cookie domain described in §2. Each episode is 5, 000 steps long, during which the agent should63

attempt to get as many cookies as possible. The second environment is the 2-keys domain (Figure 2).64

In this domain, the agent receives a reward of +1 when it reaches the coffee. To do so, it must open65

the two doors (shown in brown). Each door requires a different key to open it. Initially, the two keys66

are randomly located in either the blue room, the red room, or split between them.67

We tested two versions of our Learned Reward Machine (LRM) approach: LRM+DDQN and68

LRM+DQRM, and compared against 4 baselines: DDQN [12], A3C [6], ACER [13], and PPO [8].69

DDQN used the concatenation of the last 10 observations as a limited memory. A3C, ACER, and70

PPO used an LSTM to summarize the history. Note that the output of the binary detectors was also71

given to the baselines. As Figure 2 shows, LRM approaches largely outperformed all the baselines.72
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