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Abstract

Kernel machines are computationally expensive and therefore inefficient for the1

analysis of very large databases. In this paper, the first author propose an online2

kernel-based model based on the Learning on a Budget strategy over the dual3

formulation of Least Squared Support Vector Machine method. This extends the4

algorithm capability to analyze very large data. The method was evaluated against5

other kernel approximation techniques: Nyström approximation and Random6

Fourier Features. Experiments performed by the authors show the effectiveness of7

the Learning on a Budget strategy in alleviating the computational complexity.8

1 Introduction and Related Work9

Kernel methods can approximate very complex non-linear decision functions in an implicit high10

dimensional feature space F thanks to the kernel trick [5]. However, due to the computing of the11

Gram matrix of the data, traditional kernel methods suffer problems with memory and computational12

time complexity [2]. Given the fact that the size of the data has been growing exponentially, machine13

learning methods mostly point to more efficient optimizations strategies. In this sense, approximated14

kernel techniques combined with Stochastic Gradient Descent (SGD) rises as an effective procedure15

for large scale learning [3].16

Approximated kernel methods have been widely studied due to their computational benefits [13].17

Their main goal is to avoid the calculation of the entire Gram matrix. Two of the most used are the18

Nyström Method [4], which finds a low rank approximation of the matrix from a submatrix, and the19

RFF method [9]. RFF allows to approximate the feature map φ with linear projections on D random20

features, and gives a low dimensional representation of the feature space F induced by the kernel.21

Recently, several works have also used the Learning on a Budget technique[12]. With the budget, the22

loss function does not use the full kernel matrix, but only a small portion of it. The rest of the data is23

involved during an online training.24

Regarding SGD, the classic formulation for the optimization problem in kernel-based methods does25

not permit an explicit implementation of SGD. However, it turned out to be possible in a variation of26

the Least Squares Support Vector Machine (LS-SVM) [11]. In the present work, an Online Budget27

LS-SVM, based on the Learning on a Budget strategy is proposed and evaluated. The performance of28

the method is compared with the Nyström approximation and the Random Fourier Features approach.29

2 Method30

The classic LS-SVM solves the optimization problem by means of a system of linear equations31

with restrictions. Those restrictions can be incorporated directly into the loss function in the dual32

formulation. Then, the Learning on a Budget strategy can be implemented in LS-SVM as follows:33
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instead of computing the entire Gram matrix, a random selection of β instances is made, selecting a34

sub-matrix B from the input data matrix X to train the machine. Then, the loss function is35

min
α,b
L′ =

1

2
(αy)

T
k (B,B) (αy)−

β∑
k=1

αk +
γ

2

n∑
k=1

(
1− yk

[
(αy)

T
k (B, xk) + b

])2
. (1)

SGD permits an online implementation as it updates the solution using a single training sample at36

time, which alleviates even more the memory requirements. Following this, given the derivatives37
∂L′

∂αi
, and given a randomly chosen instance of X , (xj , yj), the update rule is given by38

αm = αm−ηym(αy)T k (B, xm)+η+ηγn
(
1− yj

[
(αy)T k (B, xj) + b

])
yjymk (xj , xm) . (2)

3 Experimental Evaluation and Results39

Four binary classification problems were chosen to test the proposed models using a RBF kernel.40

The datasets were: Wine, Spambase, Mnist (just with two classes) and Bank. The Online Budget41

LS-SVM was trained with different budget proportions: 0.2, 0.4, 0.6, 0.8, 1.0 of the original data42

size. The same proportions were taken to make the Nyström low rank matrix and train the Nyström43

LS-SVM. Also, an Online RFF LS-SVM was tested for five different random features sizes: the same44

as budget sizes in each dataset. Results are summarized in Figure 1.45

Figure 1: Mean and standard deviation of the results reached by Online Budget LS-SVM, the Nyström
LS-SVM and the Online RFF LS-SVM, with different budget proportions.

4 Discussion and Conclusions46

Experimental results show that there is not a significant loss of accuracy when a random budget is47

selected to train the machine. Comparing the results of Online Budget LS-SVM with the Nyström48

LS-SVM, and with the Online RFF LS-SVM, the Online Budget LS-SVM is on par with the Nyström49

version of the method, sometimes even outperforming it. The execution times showed that, in large50

datasets, the computation required to obtain the Nyström low rank matrix approximation does not51

compensate any improvement in the performance of the method. Regarding the Online RFF LS-SVM,52

the results have shown a bad performance compared to the other methods, independently of the53

number of features. To conclude, the Learning on a Budget technique alleviates the computation of54

the kernel matrix, without significant loss of accuracy, speeding up the training process, and making55

kernel-based methods more scalable.56
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