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Abstract

Inferring causality is the process of connecting causes with effects. Identifying1

even a single causal relationship from data is more valuable than observing dozens2

of correlations in a data set. Microbe-microbe and host-microbe interactions play a3

vital role in both health and disease. In this study, we investigate how to learn a4

causal structure from data from microbiome studies and its potential interpretation5

about events and processes in the microbial community under study. We report6

evidence that causal structure can extract colonization patterns even though the7

analysis only uses data with no temporal information.8

1 Introduction and Motivation9

Causation is an important type of relationship to be explored with biological data. Thus, it makes10

sense to see if causal Bayesian networks can identify relationships that are suggestive of causation,11

leading to lab experiments for validation. Bayesian networks (BNs) were used by Zhang et al.12

to understand changes in gene regulatory networks (1), and Sazal et al. used BNs to understand13

relationships among taxa in microbiomes (2). By modeling metabolic reactions and their involvement14

in multiple subnetworks of “metabosystems”, Shafiei et al. used BNs to infer differential prevalence15

of metabolic subnetworks within microbial communities (3).16

A microbiome is a community of microbes including bacteria, archaea, protists, fungi and viruses that17

share an environmental niche (4). Microbiomes can be modeled as a social network because of the18

complex set of potential interactions between its various taxonomic members (5; 6). To understand19

potential interactions between taxa in a microbial community, the construction of co-occurrence20

networks (CoN) was proposed by Fernandez et al. (5) and Faust et al. (7). The results suggested that21

the reason groups of taxa frequently co-infect cohorts of subjects or did the opposite, i.e., co-avoided22

cohorts of subjects, was because of underlying interactions between them. Unfortunately, that is as23

far as CoNs are able to go in terms of inferring complex relationships in microbiomes.24

In this paper, we investigate how to infer directional relationships between microbial taxa in a25

microbiome. In humans, normal microbial colonization starts from birth and with the passage of time26

these communities become relatively stable (8). Some microbes recruit others suggesting an order of27

colonization in many microbial communities. Understanding colonization and its order can provide28

a window into how infections take hold. We show that causal structure or signed Causal Bayesian29

Networks (scBNs), a variant of BNs obtained by combining BNs with Co-occurrence networks30

can help tease apart some of these directed relationships and provide a glimpse into the complex31

and dynamic world of microbial communities. Work is underway to investigate how to infer other32

causal relationships from the same data. In particular, our work will highlight the microbial players33

involved in recruiting other microbes, the key players in causing disease, their relative importance34

in the disease process, the role of beneficial microbes in alleviating disease symptoms, the role of35

metabolites in disease, the identification of potential targets for treatment, and much more.36
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Figure 1: Signed Causal Bayesian Network. Nodes represent microbial taxa, edges represent the
relationships among taxa, red and green edges represent negative and positive correlation respectively.

2 Methods37

Causal structures (CS) are a class of Probabilistic Graphical Models (PGMs) (9; 10) where each38

node represents a random variable from a set, X = {Xi, i = 1, . . . , n} with n random variables.39

These structures are represented as a graph G = (V,E), where each vertex in V represents a random40

variable from X, and E is the set of edges on V . The graph G is also known as a causal Bayesian41

network on X . Although undirected edges are used in cases where the direction cannot be reliably42

determined or when both directions appear to be valid, the graph G is often “manipulated” to be a43

Directed Acyclic Graph (DAG). Each random variable Xi has an associated probability distribution. A44

directed edge in E between two vertices represents direct stochastic dependencies. Therefore, if there45

is no edge connecting two vertices, the corresponding variables are either marginally independent or46

conditionally independent (conditional on the rest of the variables, or some subset thereof). To learn47

a causal structure we adopted a conditional independence test based method proposed by Spirtes48

et al. (11), later modified by Colombo and Maathuis to make it order independent, and known as49

PC-Stable algorithm (12). PC-stable consists of three steps - adjacency search in order to learn the50

“skeleton”, identifying important substructures called v-structures, and detecting and orienting other51

arcs. In Step 1, the algorithm starts with a complete undirected graph and then performs a series of52

conditional independence tests to eliminate as many edges as possible. The remaining undirected53

graph is referred to as the skeleton. Step 2 is key to inferring a directional model, and uses the concept54

of v-structures (13). Step 3, three rules (12) are applied repeatedly to orient remaining undirected55

edges (i.e., arcs not in v-structures). Finally, we added sign information from CoNs to the edges in56

the causal structure.57

We used oral data sets (16S rRNA sequences) generated as part of the Human Microbiome Project58

(HMP) from eight different sites within the oral cavity from 242 healthy adults (129 males, 11359

females) (14; 4). The samples included: saliva, buccal mucosa (cheek), keratinized gingiva (gums),60

palatine tonsils, throat, tongue dorsum, and supra- and sub-gingiva dental plaque (tooth biofilm above61

and below the gum). Abundance of individual taxa were computed after amplification of a specific62

hypervariable region of the bacterial 16S rRNA gene, followed by sequencing, grouping reads into63

common Operational Taxonomic Units (OTUs) and quantification (15). Mothur (16) was used to64

compute the microbial abundance profile.65

3 Results and Discussion66

Figure 1 shows a signed causal structure learned from keratinized gingiva data set. The results67

with all oral data sets showed a surprising connection to the order in which microbes colonize the68

human mouth. Two significant observations were as follows. (1) The directed edges of scBN for69

the oral microbiome data set were consistent with the colonization order. A total of 716 edges were70

generated for the oral microbiome scBN with the colonization order known for 78 edges. Only 271

edges in the scBN were inconsistent with the known direction, Resulting in an accuracy of 97.4%.72

(2) scBN Edges with negative correlations were consistent with the colonization order (early to late73

colonizers). All directed edges between two taxa from two colonization groups were negatively74

correlated. Thus, the scBNs help us to infer potential relationships and dependencies within a75

microbiome, and the colonization order without time information. scBNs could help in understanding76

the other dependencies among the entities of a microbial community.77
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