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Abstract

Semantic segmentation task aims to create a dense classification by labeling pixel-1

wise each object present in images. Convolutional neural network (CNN) ap-2

proaches have been proved useful by exhibiting the best results in this task. How-3

ever, some challenges remain, such as the low-resolution of feature maps and the4

loss of spatial precision, both produced in the last convolution layer of the CNNs.5

In this work, we propose an hourglass model based on the multi-task approach.6

Consequently, we combine the tasks of edge detection, semantic segmentation, and7

distance transform. The refinement of the tasks (getting specific information of8

each task) is obtained in the last layers of the decodification stage. All the tasks9

share the rest of the information, that is, shared weights. Thus our model is efficient10

with respect to the number of tasks and memory used. We obtained encouraging11

preliminary results still in images using Cityspace and Kitti datasets.12

1 Introduction and Related Works13

Humans possess a remarkable ability to parse images and videos simply by looking at it. In a blink of14

an eye, we are able to fully analyze an image and separate all the components present on it. Even15

we can perform several tasks at the same time by analyzing an image, e.g., semantic segmentation16

(SS), and instance segmentation(IS). Addressing the SS and IS tasks are not a trivial problem due17

to the variability, i.e., considerable variations in pose, appearance, viewpoint, illumination, and18

occlusion throughout the image. Note by improving segmentation task this directly influences several19

applications such as self-drive vehicles [1, 2], segmentation on X-ray [3], detect crown on dental20

X-ray [4], brain tumor segmentation [5, 6], and remote sensing [7, 8, 9].21

In recent years the fully convolutional networks (FCN) achieve significant improvement, in SS task,22

by converting fully connected layers into convolutional layers and upscale operations [10]. However,23

with this approach, new problems have been observed, such as [11, 12]: i) the low-resolution obtained24

in the output of the CNNs; and ii) the loss of spatial precision of objects within the image. Then, the25

next stage is dealing with these problems.26

Thus, FCN has used with post-processing steps. Conditional Random Fields (CRF) [13] or Gaussian27

CRF [14] are common post-processing steps but are computationally expensive; consequently,28

embedding it within a network is a viable solution [11]. Others researchers proposed to obtain a fine29

adjustment from the bounding boxes [15, 16, 17]. Instead of making an abrupt prediction of the last30

layer of CNN, the hourglass approach [18, 19, 20, 21] created an up-sampling stage in a controlled31

manner (deconvolutions and unpooling). Moreover, to arose models that take into account different32

scales [22]. These models get a full semantic map in low-resolution (coarse prediction map), then33

refine it with different fusion operations, e.g., fusion cascade [23] and attention blocks [24]. Contrary34

to multi-scale models, the approaches that use Atrous Spatial Pyramid Pooling (ASSP) [11, 25, 26, 27]35

modify the filters size instead of the size of the images. This modification is achieved using atrous36
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Figure 1: Illustration our multi-task hourglass model, for tasks of edge detection, semantic segmenta-
tion, and distance transform (applied in the task of instance segmentation). The blocks blue, orange,
and green are convolution, pooling and unpooling operations respectively. Note, the model share
weight in the first layers, and the specifics feature for each task are obtained in the last layers.

convolution [11], i.e., sparse filters, to generate features with large receptive field without sacrificing37

spatial resolution. In theory, this should be true, but later experiments showed that there are still38

insufficiencies to get fit contour segmentation [28].39

Although the previous models improved the SS task compared to the traditional works, still needs a40

greater transfer of information between its different layers. In other words, we need models that take41

into account more information, i.e., more specific features by using multi-task learning.42

2 Multi-task Hourglass Model43

The idea of using CNNs as feature extractor is not new, and it has been used widely, achieving better44

results against traditional methods [29, 30]. Nevertheless, using CNN for SS task also brings new and45

challenging problems, such as the low-resolution of the feature maps and the loss of spatial precision.46

In this work, we focus our model for use multi-task learning, with the target of learning of one task47

can improve the learning of other tasks. [31, 32, 33]. Hence, task relationships facilitate the transfer48

of shared knowledge from relevant tasks. For this reason, multi-tasks models only need to learn49

features for specific tasks [34].50

Designing and building a multi-task model for SS is not a trivial task; to achieve this, we need: i)51

identify which are similar tasks that improve SS; ii) procure independent tasks, unlike multi-task52

cascade [35]; and iii) merge the semantic information geometric information (distance transform) for53

the IS task; To carry out this approach, we need tasks that reinforce each other, so we select the tasks54

of edge detection, SS, and distance transform, which were chosen empirically.55

Thus, our multi-task architecture is inspired by SegNet [20] hourglass model due to well-behaving56

of the prediction maps (better up-sampling domain compared to interpolation) in the codification57

and decodification stage. Hence, we use convolution and pooling operations in the codification58

stage in order to extract common features for several tasks in the same image. Then, we produce59

dense prediction maps at different levels (scale). For the decodification stage, we propose to use60

deconvolution and unpooling operations where our input is the merge of the features produced at61

lower levels, and sky connection with information from the same level but from the codification stage.62

Consequently, we intend to share the information at each level by merge layers. Note, the features63

necessary to distinguish each task are shared throughout the encoder stage and half of the decoder64

stage. Thus, the last four layers of the decoder are responsible for learning specific features for each65

task. Our preliminary results, still on images, showed encouraging results using crops of 300× 50066

size on the Cityscape [36] and Kitti [37] datasets. This work is still in development. We can see67

qualitative results in the supplementary material.68
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