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Abstract

The impact of the gut microbiome on the recovery of kidney transplant recipi-1

ents has been previously shown, but the current understanding remains superficial.2

Bayesian Networks were applied to longitudinal data from kidney transplant pa-3

tients, including sequence data and clinical information, with the goal of under-4

standing the role microbes play in the recovery and health of these patients.5

1 Introduction and Motivation6

The number of microbes inside the human body is of the same order as the number of human cells7

(1), with their metabolism so tightly connected to the host’s that humans are being referred to as a8

superorganism (2). It is known that the microbiome affects the outcome of a kidney transplant, but9

its role remains to be elucidated (3). Toward this goal, stool samples were collected from 79 kidney10

transplant patients from two tertiary centers in South Korea. For all subjects, samples were collected11

before transplant, and at 3 and 12 months after transplant. Bayesian techniques were applied to12

generate new hypotheses and to find evidence for previous ones about the effect of microbiome on13

transplant outcome.14

2 Methods15

Microbial composition was inferred from the Illumina MiSeq sequence data using the software CL16

community by ChunLab and UCHIME (4). Study participants with missing samples were discarded,17

leaving a total of 24 subjects with 3 measurements each. The 40 most abundant taxa were selected18

along with different clinical variables. The temporal information of the bacteria was unrolled with19

the new nodes represented by additional subscripts, allowing them to be processed by a Bayesian20

Network (BN). This way, the measurements at the three time points for bacteria A will be replaced21

by the three attributes: At0, At3, and At12, corresponding to the measurements at time points 0,22

3 and 12 respectively, instead of being treated as new samples. The clinical information and time23

invariant outcomes were left without transformation. The data were further analyzed using Bayesian24

Networks, which are probabilistic graphical models that uncover interactions between the variables.25

The structure learning of the algorithm was done using Greedy Hill Climbing and restricting the26

maximum number of parents of a node to 3. This was done using a modified version of the R library27

bnlearn (5) to allow for categorical variables. Also, intrinsic information about the real world was28

encoded in the form of restrictions; the network only needs to learn edges that follow the flow of time29

(from present to future). Also, as the focus was on predicting certain kind of interactions, only the30

following edges were allowed: microbe to microbe, microbe to baseline clinical variable (clinical),31

microbe to transplant outcome (outcome), clinical to outcome, outcome to clinical. This was done32

during the network structure learning by checking if the candidate edge is in the allowed list. The33

parameter learning step of the BN learning consisted of calculating the Pearson correlation coefficient34

between the two nodes involved. Finally, the network was visualized using Cytoscape (6) and the35

predicted interactions were interpreted.36
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• Color represent time
• Yellow is t0
• Orange is t3
• Red is t12

• Blue is time invariant
• Shape represents node type

• Circle is taxa
• Diamond is outcome
• Triangle is clinical

• Edge thickness represents correlation
coefficient between the two nodes
• Thick means strong correlation
• Slim means weak correlation

• Edge color represents relation sign
• Green means positive correlation
• Red means negative correlation

• Edge transparency represents interest
• Solid edges predict the outcomes
• Transparent edges everything else
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Figure 1: Inferred Bayesian Network. The three representations of each bacteria (0, 3 and 12)
months are arranged in the big circle, while the clinical information and outcomes are outside.

3 Results and Discussion37

A single Bayesian network (BN) was computed using bacterial abundance at all time points, clinical38

data and transplant outcomes and visualized in Figure 1. Many of the interactions computed in39

the inferred BN are well known in the literature. For example, higher BMI correlates with higher40

prevalence of diabetic nephropathy, and older age correlates with more frequent occurrence of41

post-transplantation diabetes mellitus (PTDM).42

Antibody-mediated rejection (AMR) was correlated with higher abundance of Escherichia coli,43

Veillonella dispar, and Akkermansia muciniphila just prior to transplant. V. dispar has been shown to44

be significantly associated with autoimmune hepatitis (7) and Veillonella spp have been shown to be45

associated with severe inflammatory conditions such as recurrent Crohn’s disease (8), osteomyelitis46

(9), and endocarditis (10). It produces bacterial lipopolysaccharides and can contribute to activation47

of immune reaction (11). On the other hand, T cell-mediated rejection was not correlated with the48

abundance of any bacterial taxa, but associated with AMR. Interstitial fibrosis/tubular atrophy (IFTA)49

were positively correlated with higher level of Lactobacilus fermentum and Eisenbergiella at 0m and50

Bacteroides caccae, Alistipes onderdonkii and Veilonella dispar at 12 months. In particular, IFTA was51

mostly was mostly associated with bacteria at 12 months after kidney transplantation. IFTA causes52

chronic lesions and is associated with worsening of kidney function which would bring systemic53

change of patients. Therefore, those bacterial changes may be a result of kidney function deterioration54

and systemic inflammation. Infection, one of the most dangerous post-transplant complications,55

showed positive correlations with Bacteroides fragilis and Eubacterium eligens at 0 month. B. fragilis56

is generally known to be an important commensal for the development of the gastrointestinal tract57

and immune system (12), as well as for protection against colonization by pathogens. E. eligens58

has also been shown to display anti-inflammatory properties (13). PTDM was positively correlated59

with Faecalibacterium and Bacteroides caccae at 0 month, and negatively with E. coli. In one study,60

kidney recipients who need tacrolimus dose escalation during the first month of transplant showed61

higher abundance of Faecalibacterium prausnitzii in the first week of kidney transplantation (14).62

It is possible that Faecalibacterium could cause PTDM by leading patients to have larger dose of63

tacrolimus.64
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