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Abstract

Language modelling (LM) is regularly analysed at word, sub-word or character1

level inputs, and this study reconsiders syllable units for the task. Rule-based2

syllabification typically requires less specialised knowledge than identifying mor-3

phemes, and the process can naturally work for low-resource cases, as we do not4

need an unsupervised model to extract sub-words. In this paper, we compare differ-5

ent granularities from characters to words in an open-vocabulary LM task, where6

syllables mostly outperform the rest of them for both English and Shipibo-Konibo7

languages. Thereafter, we obtain similarly positive results for syllable-level neural8

machine translation (NMT) with Spanish too. [All authors identify as Latinx]9

1 Introduction10

Previous work on syllable-aware LM in English failed to beat character-level models [2]; however, we11

propose to assess the task under two new settings. First, we could employ a plain-vanilla architecture,12

without additional composition functions, to analyse an open-vocabulary scenario with syllables [3].13

Second, English has a weak correspondence between graphemes (written symbols) and phonemes14

(speech units), so we might include an study case with less-ambiguous splits. Therefore, we revisit15

syllable-aware LM by using simple recurrent neural networks [8] for open-vocabulary generation [15],16

and by also assessing a more phonetic language with a recent alphabetisation (Shipibo-Konibo [1]).17

We thereupon explore the syllables effect in another generation task such as NMT.18

2 Methodology and Results19

We evaluate syllables against words, Byte Pair Encoding [BPE, 14] sub-words, and characters, with a20

comparable perplexity [10] in LM; and character [18] and word level [13] metrics in NMT.21

2.1 Languages and Datasets22

For LM in English (eng), we use well-known datasets: Penn Treebank [PTB, 7] and WikiText-2 [9].23

In the case of Shipibo-Konibo (shp), a low-resource and native language from Peru, we process the24

monolingual side of three parallel corpora aligned with Spanish (spa) [4]. For one of them, named25

Flashcards, we align eng sentences from the original eng–spa corpus used for its creation [16]. For26

comparison purposes, we also analyse the new eng monolingual text of Flashcards in LM. Afterwards,27

we study the NMT case only with the Flashcards dataset in both shp–eng and shp–spa language-pairs.28

We segment syllables in shp with rules [1] and with a dictionary-based method [5] for eng and spa.29

Table 1-a-b describes the data for LM. We observe a vast amount of syllable types in the eng datasets,30

in contrast to shp, where syllables are closer to characters than to other granularities. Moreover, the31

Flashcards segmentation reveals the perplexing nature of eng syllables. For the LM task on shp, the32

significantly low amount of unique syllables could be interpreted as modelling a language with a33

larger alphabet (more characters types) and a smaller average length of token.34
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a Split size b # types c pplc ↓
Dataset Train Valid Test Word Syl Char BPE Word Syl Char BPE (*)

eng
PTB 887.0k 70.3k 78.6k 10.0k 6.1k 48 4.7k 2.36 2.11 2.52 2.42 (5k)

WikiText-2 103.2M 217.6k 245.5k 33.2k 19.5k 274 1.3k 2.62 2.15 2.72 2.63 (1k)
Flashcards 14.7k 1.4k 1.7k 2.5k 2.4k 63 2.3k 2.12 2.24 3.01 2.62 (3k)

shp
Flashcards 12.1k 2.1k 1.4k 2.6k 193 30 1.8k 2.70 2.39 2.64 3.30 (3k)
Religious 82.4k 9.4k 10.2k 11.1k 331 26 1.0k 3.01 2.37 2.48 2.92 (1k)

Educational 32.0k 3.6k 4.1k 4.0k 258 32 2.8k 2.65 2.16 2.29 2.77 (3k)

Table 1: (a) Split size in tokens; (b) Number of types per segmentation in Train; (c) pplc on Test for
LM. For BPE, we show the best score given various merges between 1k–5k with a 1k-step.

BLEU ↑ characTER ↓
Word Syl Char BPE 5k–10k–15k Word Syl Char BPE 5k–10k–15k

shp–eng 16.26 18.38 19.60 16.90 15.65 16.21 63.86 53.57 54.25 56.20 58.71 57.51
eng–shp 16.35 19.70 17.32 16.61 16.80 17.17 57.07 51.76 53.40 55.61 55.80 56.91
shp–spa 08.91 13.20 10.62 08.68 08.76 09.14 68.37 55.33 58.98 62.20 63.00 64.61
spa–shp 09.76 14.78 13.39 11.62 11.62 12.12 65.79 55.05 55.24 62.48 63.42 62.88

Table 2: NMT results at word (BLEU) and character level (CharacTER) on the Flashcards dataset.

2.2 Language Modelling with a Comparable Perplexity35

For a fair comparison across all granularities, we evaluate all results with character-level perplexity:36

pplc = exp (L · (sseg + 1)/(sc + 1)), where L is the cross-entropy loss of a string s computed by a37

neural LM, and sseg and sc refer to the length of s in the chosen segmentation and character level units,38

respectively [10]. Furthermore, we generate the same input unit as an open-vocabulary task, where39

there is no prediction of an “unknown” token [15], with an exception at word-level in PTB. We thereby40

differ from previous work [2], and refrain from composing the syllable representations into words to41

evaluate only word-level perplexity. Following other open-vocabulary LM studies [12, 11], we use a42

low-compute version of an LSTM neural network, named Average SGD Weight-Dropped [8], with a43

smaller embedding size (300 units) for faster training. Additionally, we use the SentencePiece [6]44

segmentation format in both characters and syllables, and the original one for BPE [14].45

Table 1-c shows that syllables mostly result in better perplexities that the remaining granularities in46

LM, even for a low-phonetic language as eng, and with a very competitive score when they do not47

achieve the best one. Moreover, syllables outperform the rest in the open-vocabulary scope (excluding48

words). Beating characters implies a gain in time processing as well, given the shorter sequences49

of syllables. Other settings that could be further explored are working unsupervised morphemes or50

morphological-aided supervision [17], and constraining the BPE-vocabulary size to the number of51

syllable types [6].52

2.3 Syllables for Neural Machine Translation (NMT)53

To further explore the value of syllables, we build eng–shp and spa–shp NMT models with all54

granularities as inputs-outputs. Each model uses a two-layer LSTM encoder-decoder with a hidden55

layer of 512, an embedding size of 300, and joint BPE with various merges. Table 2 presents the56

BLEU [13] and CharacTER [18] scores, where syllables predominantly stand out again, with an57

exception against characters in shp–eng at the word level metric. This result reinforces the initial58

concern for the phonetic ambiguity of eng, as we infer an inherent difficulty to reconstruct a word59

with generated syllable sequences. We also hypothesise that the joint BPE models do not provide the60

best scores given the potentially small word and sub-word overlapping of shp with both eng and spa.61

3 Conclusion62

Our results suggest that syllables might be valuable for both open-vocabulary LM and NMT tasks,63

where they behave positively even for a poor phonemically-spelt language. Syllables do not have64

an embedded meaning; however, the required effort for their segmentation could be advantageous65

concerning other morphological-aware or unsupervised-driven methods. Finally, we are currently66

working on exploring a multilingual scope and the hybrid-LM scenario [12] with syllables.67
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