Revisiting Syllable-aware Language Modelling

Anonymous Author(s) Affiliation Address email

Abstract

Language modelling (LM) is regularly analysed at word, sub-word or character 1 2 level inputs, and this study reconsiders syllable units for the task. Rule-based 3 syllabification typically requires less specialised knowledge than identifying mor-4 phemes, and the process can naturally work for low-resource cases, as we do not 5 need an unsupervised model to extract sub-words. In this paper, we compare different granularities from characters to words in an open-vocabulary LM task, where 6 syllables mostly outperform the rest of them for both English and Shipibo-Konibo 7 languages. Thereafter, we obtain similarly positive results for syllable-level neural 8 machine translation (NMT) with Spanish too. [All authors identify as Latinx] 9

10 1 Introduction

11 Previous work on syllable-aware LM in English failed to beat character-level models [2]; however, we propose to assess the task under two new settings. First, we could employ a plain-vanilla architecture, 12 without additional composition functions, to analyse an open-vocabulary scenario with syllables [3]. 13 Second, English has a weak correspondence between graphemes (written symbols) and phonemes 14 (speech units), so we might include an study case with less-ambiguous splits. Therefore, we revisit 15 syllable-aware LM by using simple recurrent neural networks [8] for open-vocabulary generation [15], 16 and by also assessing a more phonetic language with a recent alphabetisation (Shipibo-Konibo [1]). 17 We thereupon explore the syllables effect in another generation task such as NMT. 18

19 2 Methodology and Results

We evaluate syllables against words, Byte Pair Encoding [BPE, 14] sub-words, and characters, with a comparable perplexity [10] in LM; and character [18] and word level [13] metrics in NMT.

22 2.1 Languages and Datasets

For LM in English (eng), we use well-known datasets: Penn Treebank [PTB, 7] and WikiText-2 [9]. 23 In the case of Shipibo-Konibo (*shp*), a low-resource and native language from Peru, we process the 24 monolingual side of three parallel corpora aligned with Spanish (spa) [4]. For one of them, named 25 Flashcards, we align *eng* sentences from the original *eng–spa* corpus used for its creation [16]. For 26 comparison purposes, we also analyse the new eng monolingual text of Flashcards in LM. Afterwards, 27 we study the NMT case only with the Flashcards dataset in both *shp-eng* and *shp-spa* language-pairs. 28 We segment syllables in *shp* with rules [1] and with a dictionary-based method [5] for *eng* and *spa*. 29 Table 1-a-b describes the data for LM. We observe a vast amount of syllable types in the *eng* datasets, 30

in contrast to *shp*, where syllables are closer to characters than to other granularities. Moreover, the

³² Flashcards segmentation reveals the perplexing nature of *eng* syllables. For the LM task on *shp*, the

³³ significantly low amount of unique syllables could be interpreted as modelling a language with a

³⁴ larger alphabet (more characters types) and a smaller average length of token.

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

		(a) Split siz	(b) # types				$(c) ppl^{c} \downarrow$				
	Dataset	Train	Valid	Test	Word	Syl	Char	BPE	Word	Syl	Char	BPE (*)
eng	PTB	887.0k	70.3k	78.6k	10.0k	6.1k	48	4.7k	2.36	2.11	2.52	2.42 (5k)
	WikiText-2	103.2M	217.6k	245.5k	33.2k	19.5k	274	1.3k	2.62	2.15	2.72	2.63 (1k)
	Flashcards	14.7k	1.4k	1.7k	2.5k	2.4k	63	2.3k	2.12	2.24	3.01	2.62 (3k)
shp	Flashcards	12.1k	2.1k	1.4k	2.6k	193	30	1.8k	2.70	2.39	2.64	3.30 (3k)
	Religious	82.4k	9.4k	10.2k	11.1k	331	26	1.0k	3.01	2.37	2.48	2.92 (1k)
	Educational	32.0k	3.6k	4.1k	4.0k	258	32	2.8k	2.65	2.16	2.29	2.77 _(3k)

Table 1: (a) Split size in tokens; (b) Number of types per segmentation in Train; (c) ppl^c on Test for LM. For BPE, we show the best score given various merges between 1k–5k with a 1k-step.

			BLE	EU↑		characTER ↓						
	Word	Syl	Char	BP	BPE 5k-10k-15k		Word	Syl	Char	BPE 5k-10k-15k		
shp-eng	16.26	18.38	19.60	16.90	15.65	16.21	63.86	53.57	54.25	56.20	58.71	57.51
eng–shp	16.35	19.70	17.32	16.61	16.80	17.17	57.07	51.76	53.40	55.61	55.80	56.91
shp-spa	8.91	13.20	10.62	8.68	8.76	9.14	68.37	55.33	58.98	62.20	63.00	64.61
spa–shp	9.76	14.78	13.39	11.62	11.62	12.12	65.79	55.05	55.24	62.48	63.42	62.88

Table 2: NMT results at word (BLEU) and character level (CharacTER) on the Flashcards dataset.

35 2.2 Language Modelling with a Comparable Perplexity

For a fair comparison across all granularities, we evaluate all results with character-level perplexity: 36 $ppl^c = \exp(L \cdot (s^{seg} + 1)/(s^c + 1))$, where L is the cross-entropy loss of a string s computed by a 37 neural LM, and s^{seg} and s^c refer to the length of s in the chosen segmentation and character level units, 38 respectively [10]. Furthermore, we generate the same input unit as an open-vocabulary task, where 39 there is no prediction of an "unknown" token [15], with an exception at word-level in PTB. We thereby 40 differ from previous work [2], and refrain from composing the syllable representations into words to 41 evaluate only word-level perplexity. Following other open-vocabulary LM studies [12, 11], we use a 42 low-compute version of an LSTM neural network, named Average SGD Weight-Dropped [8], with a 43 smaller embedding size (300 units) for faster training. Additionally, we use the SentencePiece [6] 44 segmentation format in both characters and syllables, and the original one for BPE [14]. 45

Table 1-c shows that syllables mostly result in better perplexities that the remaining granularities in LM, even for a low-phonetic language as *eng*, and with a very competitive score when they do not achieve the best one. Moreover, syllables outperform the rest in the open-vocabulary scope (excluding words). Beating characters implies a gain in time processing as well, given the shorter sequences of syllables. Other settings that could be further explored are working unsupervised morphemes or morphological-aided supervision [17], and constraining the BPE-vocabulary size to the number of syllable types [6].

53 2.3 Syllables for Neural Machine Translation (NMT)

To further explore the value of syllables, we build *eng-shp* and *spa-shp* NMT models with all 54 granularities as inputs-outputs. Each model uses a two-layer LSTM encoder-decoder with a hidden 55 layer of 512, an embedding size of 300, and joint BPE with various merges. Table 2 presents the 56 BLEU [13] and CharacTER [18] scores, where syllables predominantly stand out again, with an 57 exception against characters in *shp-eng* at the word level metric. This result reinforces the initial 58 concern for the phonetic ambiguity of eng, as we infer an inherent difficulty to reconstruct a word 59 with generated syllable sequences. We also hypothesise that the joint BPE models do not provide the 60 best scores given the potentially small word and sub-word overlapping of shp with both eng and spa. 61

62 **3** Conclusion

Our results suggest that syllables might be valuable for both open-vocabulary LM and NMT tasks,
where they behave positively even for a poor phonemically-spelt language. Syllables do not have
an embedded meaning; however, the required effort for their segmentation could be advantageous
concerning other morphological-aware or unsupervised-driven methods. Finally, we are currently
working on exploring a multilingual scope and the hybrid-LM scenario [12] with syllables.

68 References

- [1] Carlo Alva and Arturo Oncevay. Spell-checking based on syllabification and character-level graphs for a Peruvian agglutinative language. In *Proc. of the First Workshop on Subword and Character Level Models in NLP*, pages 109–116. Association for Comp. Linguistics, 2017.
- [2] Zhenisbek Assylbekov, Rustem Takhanov, Bagdat Myrzakhmetov, and Jonathan N. Washington.
 Syllable-aware neural language models: A failure to beat character-aware ones. In *Proceedings* of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1866– 1872. Association for Computational Linguistics, 2017.
- [3] Ryan Cotterell, Sebastian J. Mielke, Jason Eisner, and Brian Roark. Are all languages equally
 hard to language-model? In *Proceedings of the 2018 Conference of the NAACL-HLT, Vol. 2 (Short Papers)*, pages 536–541. Association for Computational Linguistics, 2018.
- [4] Héctor E. Gómez Montoya, Kervy D. Rivas Rojas, and Arturo Oncevay. A continuous im provement framework of machine translation for Shipibo-konibo. In *Proceedings of the 2nd Workshop on Technologies for MT of Low Resource Languages*, pages 17–23. EAMT, 2019.
- [5] Kozea. Pyphen. Available in: https://pyphen.org/, 2013.
- [6] Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
 tokenizer and detokenizer for neural text processing. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 66–71.
 Association for Computational Linguistics, 2018.
- [7] Mitchell P. Marcus, Beatrice Santorini, and Mary A. Marcinkiewicz. Building a large annotated
 corpus of English: The Penn Treebank. *Computational Linguistics*, 19(2):313–330, 1993.
- [8] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
 language models. In *International Conference on Learning Representations*, 2018.
- 91 [9] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture 92 models. *arXiv preprint arXiv:1609.07843*, 2016.
- [10] Sebastian J. Mielke. Can you compare perplexity across different segmentations? Available in:
 http://sjmielke.com/comparing-perplexities.htm, 2019.
- [11] Sebastian J. Mielke, Ryan Cotterell, Kyle Gorman, Brian Roark, and Jason Eisner. What kind
 of language is hard to language-model? In *Proc. of the 57th Annual Meeting of the Association for Computational Linguistics*, pages 4975–4989. Association for Comp. Linguistics, 2019.
- [12] Sebastian J. Mielke and Jason Eisner. Spell once, summon anywhere: A two-level open vocabulary language model. In *The Thirty-Third AAAI Conf. on Artificial Intelligence*, 2019.
- [13] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 evaluation of machine translation. In *Proc. of the 40th Annual Meeting of the Association for Computational Linguistics*, pages 311–318. Association for Computational Linguistics, 2002.
- [14] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
 words with subword units. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics*, pages 1715–1725. Association for Computational Linguistics, 2016.
- [15] Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with recurrent neural networks. In *Proceedings of the 28th International Conference on International Conference on Machine Learning*, pages 1017–1024, 2011.
- [16] Tatoeba. Tab-delimited bilingual sentence pairs. Available in: http://www.manythings.
 org/anki/, 2010. These are selected sentence pairs from the Tatoeba Project.
- [17] Clara Vania and Adam Lopez. From characters to words to in between: Do we capture morphology? In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*, pages 2016–2027. Association for Computational Linguistics, 2017.
- [18] Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney. CharacTer: Translation
 tion edit rate on character level. In *Proceedings of the First Conference on Machine Translation*:
- *Vol. 2, Shared Task Papers*, pages 505–510. Association for Computational Linguistics, 2016.