
Involving humans to learn attributes

Semantic visual attributes (such as “metallic” or “smiling”) have been used for a variety of tasks: as a1

low-dimensional representation for object recognition [1, 5, 9, 11, 2], as a textual representation to2

recognize unseen categories [1, 5, 7, 2, 6], as a supervision modality for active learning [4, 8], etc.3

However, unlike object categories, attributes are not well-defined. To see why, consider the following4

thought experiment. If a person is asked to draw a “boot”, the drawings of different people will likely5

not differ very much. But if a person is asked to draw what the attributes “formal” or “feminine”6

mean, drawings will vary. Drawings of a “forest” will likely all include a number of trees, but7

drawings of a “natural”, “open-area”, or “cluttered” scene will differ greatly among artists. Finally,8

if humans are asked to draw or even pick from a set of male actors an “attractive” or “masculine”9

person, responses will differ more than if they were asked to draw or select a “man”.10

Since attributes are less well-defined, capturing them with computational models poses a different set11

of challenges than capturing object categories does. There is a disconnect between how humans and12

machines perceive attributes, and it negatively impacts tasks that involve communication between a13

human and a machine, since the machine may not understand what a human user has in mind when14

referring to a particular attribute. Since attributes are human-defined, the best way to deal with their15

ambiguity is by learning from humans what these attributes really mean.16

Q: Is it pointy?
A: No. 

Q: Is she attractive?
A: Yes. 

Q: Is she chubby?
A: Yes. 

Q: Is it formal?
A: Yes. 

Figure 1: We learn the spatial support of attributes by asking humans to judge if an attribute is present
in training images. We use this support to improve attribute prediction.

We propose to learn attribute models using human gaze maps that show which part of an image17

contains the attribute. To obtain gaze maps for each attribute, we conduct human subject experiments18

where we ask viewers to examine images of faces, and shoes, and determine if a given attribute is19

present in the image or not. We use an inexpensive GazePoint eyetracking device which is simply20

placed in front of a monitor to track viewers’ gaze, and record the locations in the image that had21

some number of fixations. We aggregate the gaze collected from multiple people on training images,22

to obtain an averaged gaze map per attribute that we use to extract features from both training and23

test images. We also experiment with learning a saliency model that predicts which pixels will be24

fixated. To capture the potential ambiguity and visual variation within each attribute, we cluster the25

positive images per attribute and their corresponding gaze locations, and obtain multiple gaze maps26

per attribute. We create one classifier per gaze map which only uses features from the region under27

non-zero gaze map values, for both training and testing.28

Our proposed techniques for computing the spatial support of an attribute and extracting features29

accordingly, MULTIPLE TEMPLATES and MULTIPLE TEMPLATES PREDICTED, as well as their30

simplified versions SINGLE TEMPLATE and SINGLE TEMPLATE PREDICTED, achieves competitive31

attribute prediction accuracy compared to five methods in Table 1, desccribed below.32

• using the whole image for both training and testing (WHOLE IMAGE);33

• DATA-DRIVEN, a baseline which selects features using an L1-regularizer over features34

extracted on a grid, then sets grid template cells on/off depending on whether at least one35
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WI ST MT STP MTP DD US R RE
(ours) (ours)

feminine 0.83 0.80 0.60 0.78 0.62 0.68 0.63 0.78 0.82
formal 0.75 0.75 0.81 0.76 0.76 0.55 0.66 0.75 0.74
open 0.53 0.58 0.57 0.53 0.56 0.30 0.43 0.50 0.57

pointy 0.16 0.30 0.53 0.10 0.48 0.55 0.00 0.23 0.20
sporty 0.74 0.81 0.82 0.80 0.77 0.54 0.66 0.70 0.72

avg 0.60 0.65 0.67 0.59 0.64 0.52 0.48 0.59 0.61
Asian 0.22 0.28 0.32 0.30 0.26 0.24 0.29 0.23 0.24

attractive 0.61 0.80 0.84 0.80 0.82 0.69 0.84 0.76 0.77
baby-faced 0.06 0.11 0.07 0.06 0.10 0.09 0.06 0.08 0.22
big-nosed 0.64 0.33 0.43 0.27 0.40 0.41 0.32 0.27 0.15
chubby 0.36 0.34 0.40 0.30 0.36 0.24 0.24 0.27 0.29
Indian 0.25 0.15 0.24 0.12 0.18 0.12 0.20 0.16 0.08

masculine 0.68 0.68 0.78 0.71 0.70 0.63 0.80 0.69 0.72
youthful 0.65 0.62 0.66 0.58 0.63 0.53 0.60 0.61 0.60

avg 0.43 0.41 0.47 0.39 0.43 0.37 0.42 0.38 0.38
total avg 0.52 0.53 0.57 0.49 0.53 0.45 0.45 0.49 0.50

Table 1: F-measure using bag-of-words SIFT features. WI = WHOLE IMAGE, ST = SINGLE
TEMPLATE, MT = MULTIPLE TEMPLATES, STP = SINGLE TEMPLATE PREDICTED, MTP =
MULTIPLE TEMPLATES PREDICTED, DD = DATA-DRIVEN, US = UNSUPERVISED SALIENCY, R =
RANDOM, RE = RANDOM ENSEMBLE. Bold indicates best performer excluding ties.

feature in that grid cell received a non-zero weight from the regularizer (note we do this36

only for localizable features);37

• UNSUPERVISED SALIENCY, a baseline which predicts standard saliency using a state-of-38

the-art method [3]1 but without training on our attribute-specific gaze data, and the resulting39

saliency map is then used to compute a template mask;40

• RANDOM, a baseline which generates a random template over a 15x15 grid, where the41

number of 1-valued cells is equal to the number of 1-valued cells in the corresponding42

SINGLE TEMPLATE template; and43

• an ensemble of random template classifiers (RANDOM ENSEMBLE), which is the random44

counterpart to the ensemble used by MULTIPLE TEMPLATES.45

In addition to this quantitative result, we demonstrate an application showing how our method can be46

used to visualize attribute models. We use Vondrick et al.’s Hoggles [10], a method used for object47

model visualization, and apply it to attribute visualization, on (1) models learned from the whole48

image, and (2) models learned from the regions chosen by our templates. We show examples in49

Fig. 2. Using the templates produces more meaningful visualizations than using the whole image.50

For example, for the attribute “baby-faced”, our visualization shows a smooth face-like image that51

highlights the form of the nose and the cheeks, and for “big-nosed”, we see a focus on the nose.52

Figure 2: Model visualizations for (a) the attribute “baby-faced”, using whole image features (left)
and our template masks (right), and (b) the attribute “big-nosed”.

To conclude, the main contribution of our work is a new method for learning attribute models, using53

inexpensive but rich data in the form of gaze. We show that our method successfully discovers the spa-54

tial support of attributes. Despite the close connection between attributes and human communication,55

gaze has never been used to learn attribute models before.56

1We used the authors’ online demo to compute saliency on our images, as code was not available.
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