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Abstract

In this work, we propose a novel approach to detecting anomalous events in videos1

based on people movements, which are represented through time as trajectories.2

Given a video scenario, we collect trajectories of normal behavior using people3

pose estimation and employ a multi-tracking data association heuristic to smooth4

trajectories. We propose two distinct approaches to describe the trajectories, based5

on Convolutional Neural Network and Recurrent Neural Network. We use these6

models to describe all trajectories where anomalies are those that differ much from7

all normal trajectory. Experimental results show that our model is comparable with8

state-of-art methods and also support the idea of using trajectories to find other9

type of useful information, helping to understand people behavior, for instance the10

existence of rare trajectories.11

1 Introduction12

Abnormal event detection for video surveillance refers to the problem of finding patterns in sequences13

that do not conform to expected events [10]. It is a challenging problem because the definition of14

anomaly is subjective to the particular scene context, giving origin to a large number of possibilities.15

For instance, someone running at a marathon is a normal event, while someone running during a16

regular working day might be due to an emergency, an anomalous event. Therefore, the difficulty of17

anomaly recognition is related to the semantics that are observed in the scene.18

Due to the success of Deep Neural Networks (DNN), researchers started to employ them to solve19

the anomaly recognition problem [12]. For instance, CNN-based approaches describe anomalies by20

creating models that combine optical flow and texture information from spatiotemporal regions [22].21

Models that use AE or Convolutional AE (CAE) [20] aim at describing events in non-supervised22

fashion. Thus, anomalies are representations that differ from normal (i.e., an anomaly occurs when23

the AE is not able to perform a satisfactory reconstruction). Similar to AE, GAN-based approaches24

learn the normal behavior using a generative model [18], in which anomalies are recognized by25

the discriminator since the generator built an anomaly representation based in normal situations.26

Furthermore, RNN models usually appear accompanied with DNN, specially for movement data [6].27

The idea is to combine the recurrent information of what is considered normal and create a rep-28

resentation of it. Nevertheless, most of these models depend on the camera position. Thus, these29

models learn specific patterns of the camera view which cannot be transferred to other views without30

retraining. Similarly to handcrafted features [9], these techniques also extract texture (appearance)31

and movement (flow) information. On the other hand, in our model, the source of information for32

anomaly representation is different. Specifically, our model extracts information from trajectories.33

An important difference with these models is the fact that our model is not affected by large color34

intensity changes.35
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Anomaly recognition models based on trajectories [25] are among first approaches in visual anomaly36

recognition. The main drawback of this model was the problem of people detection and trajectory37

building. However, with novel approaches and technologies, this issue has been progressively reduced.38

The model proposed by Cosar et al. [8] considers trajectories to build regions which are examined39

in a time lapse to find texture and movement information. The process is divided into two phases:40

description and filtering. Li et al.[13] proposed a technique that describes the scene using a sparse41

representation of overlapping trajectories, these trajectories are grouped and abnormal events are42

recognized when they differs much from any cluster. While Saini et al. [23] used trajectories to43

train a Hidden Markov Model (HMM) combined with genetic algorithm to detect anomalies by their44

low probability,the model proposed by Zhou et al. [29] developed a method based on HMM and45

feature clustering. An important difference between these approaches and ours is that our model does46

not segment the trajectories in parts or blocks, it focuses in complete trajectory. Furthermore, for47

surveillance purposes, region based models analyze motion characteristics, which are not meaningful48

without accurate localization of the targets. Thus, trajectories present the complete event that contains49

the anomaly.50

In this work, we exploit high level information to create a robust representation for anomaly recogni-51

tion. Our approach models people movements by leveraging from body skeletons obtained through a52

state-of-the-art pose estimator. The reference points are extracted from body skeleton and aggregated53

through time, building a trajectory. Each trajectory is then represented using deep neural networks to54

better encode its morphology. Our hypothesis is that trajectories are able to encode the necessary55

information from movement to recognize certain anomalous events. Since our proposed approach56

is based on trajectories, it is more robust to the aforementioned issues that affect movement and57

appearance approaches, because it, an advantage from using trajectories is that the localization of the58

particular individual performing an anomalous event is easily retrieved. In addition, trajectories allow59

other applications, such as people behavior analysis. We illustrate this application by using clustering60

models, such that it is possible to characterize the rarity of trajectories [28]. It is important to highlight61

that the proposed model is oriented to scenes where people detector and tracking algorithms may62

offer a good representation, thus, high crowds scenes are not considered in the scope of this research.63

The novelty and contributions of this work are summarized as follows. (i) A spatial and temporal64

trajectory descriptor for anomaly event detection based on deep neural networks, aiming at describing65

trajectories by their morphology. (ii) A novel approach for anomaly recognition extracted from higher66

level information. (iii) A heuristic for multi-object tracking for data association based on Kalman67

filter. (iv) An experimental evaluation regarding trajectories and the relation between anomalies and68

rarity.69

The pipeline of our proposed approach for anomaly recognition comprising four main steps: (i)70

reference point estimation, (ii) tracking building, (iii) feature extraction, and (iv) anomaly and rare71

trajectory recognition. Figures 1(a) and 1(b) present some of our experimental results in Subway72

dataset [1].73
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Figure 1: Experimental results and comparison with the state-of-the-art on the Entrance and Exit
sequences. (a) ROC results for Entrance clip; (b) results for the Exit clip.
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