
Neural Network Autoencoders for Compressed
Neuroevolution

Anonymous Author(s)
Affiliation
Address
email

1 Motivation1

Neuroevolution is a gradient-free training method for deep reinforcement learning (RL) agents2

based on the principles of natural selection. Such et al. [2017] showed that RL agents trained via3

neuroevolution can avoid common shortcomings of gradient-based learning algorithms, such as4

falling into local traps preventing agents from finding better solutions. Subsequently, Evolutionary5

Reinforcement Learning (ERL) by Khadka and Tumer [2018] showed that neuroevolution methods6

can compliment gradient-based training methods to achieve even better performance. This idea7

was then expanded by Khadka et al. [2019] in CERL where a portfolio of agents drawing on8

gradient-free and gradient-based training methods achieve state-of-the-art performance on various9

RL benchmarks. The integration of gradient-based and gradient-free methods in frameworks such10

as CERL, however, still has not fully mitigated the primary weakness of neuroevolution techniques:11

low sample efficiency. Given that weakness, we propose a novel method to help mitigate the low12

sample efficiency of neuroevolution as a training method of RL agents, both in isolation as well as in13

a collaborative framework such as CERL.14

2 Neural Network Autoencoders15

A major reason why neuroevolution is very sample inefficient for training RL policy nets is due16

to the fact that the neural networks have a large number of weights and parameters. Moreover,17

the nature of the weight distribution is often sparse and contains many superfluous weights that18

overparametrize the problem, leading to extraneous computation during training. Hence, we19

aim to find a lower dimensional embedding of neural network weights by using autoencoders.20

Figure 1: Mutation Performed on Latent Code

As shown in Figure 1, the goal is to encode21

the network weights and thereafter perform the22

evolutionary operations in the latent subspace23

derived by the encoder. Since the latent sub-24

space has fewer parameters, and would ideally25

be less sparse, there should be less wasted com-26

putation during neuroevolution. Autoencoders27

have been used in other areas of deep learning,28

particularly in computer vision, to generate la-29

tent codes of a variety of objects without making30

many assumptions about the nature the underlying distribution [Goodfellow et al., 2016].31

3 Current Work32

The first challenge we face in order to test our hypothesis is to train an autoencoder and determine33

whether we can find a compressed representation for neural network weights. The training is34

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



based on the following loss function: L =
√∑N

j=0(yD − yI)2, which is the L2 norm of the35

difference of the output distributions of the decoded network yD and the input network yI . This36

is a general purpose loss function that can be used to train neural network autoencoders regardless37

of the underlying task. Figure 2 shows a schematic of the actual training procedure for neural38

network autoencoders for deep RL policy networks. In order to make the problem more tractable, the39

training task was performed in a layer-by-layer fashion, which is preferred due to memory concerns40

of passing the entire collection of neural network parameters through an autoencoder structure.41

Figure 2: Layer-by-Layer Autoencoders for RL
Policy Networks

Furthermore, this process also makes the train-42

ing process more modular, allowing one to find43

influential layers, as shown in the preliminary44

results for RL architectures in Figure 3. Figure 345

shows the results for training autoencoders on a46

distribution of networks that solved the Mujoco47

[Todorov et al., 2012] based Hopper-v2 envi-48

ronment. The input data for the autoencoders49

consisted of a collection of state-action pairs ob-50

tained by deployment previously trained Hopper51

networks in the environment, combined with a52

given percentage of random state-action pairs,53

which provides a more decorrelated set of inputs54

the autoencoder framework. The set of trained55

networks was split into training, validation, and test sets. In the testing phase, the networks produced56

by the decoder were deployed on the actual task and compared to the performance of the test set57

input networks on the same task. As seen in Figure 3, the training process allows the autoencoders to

(a) Training of Autoencoders on Performance
Loss

(b) Validation of Autoencoders on Perfor-
mance Loss

(c) Legend

(d) Testing - Decoded Networks Score in
Hopper-v2 Environment

(e) Testing - Input Networks Score in Hopper-
v2 Environment

(f) Legend

Figure 3: Training Neural Network Autoencoders on the Hopper-v2 Domain isolating different Layer
Autoencoders - Layer Indexing starting from the layer closest to the input.

58
learn the parameter distribution of the training networks pretty well, while the validation and testing59

phase show a significantly higher variability in the results. The results in Figure 3 also show the60

different effects of autoencoding various layers in isolation on the overall performance. This suggests61

that rather than compressing all layers of a neural network, it is possible to find individual layers62

which provide better performance when compressed in isolation. Future work for this project will63

focus on finding ways to improve the testing performance of the autoencoders, and subsequently64

apply compressed evolution to train RL policy nets, in isolation as well as CERL-like collaborative65

frameworks, on the Mujoco benchmarks.66

2



References67

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.68

deeplearningbook.org.69

S. Khadka and K. Tumer. Evolution-guided policy gradient in reinforcement learning. In Advances70

in Neural Information Processing Systems, pages 1196–1208, 2018.71

S. Khadka, S. Majumdar, T. Nassar, Z. Dwiel, E. Tumer, S. Miret, Y. Liu, and K. Tumer. Collaborative72

evolutionary reinforcement learning. arXiv preprint arXiv:1905.00976v2, 2019.73

F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep neuroevolution:74

Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement75

learning. 2017.76

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In Intelligent77

Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 5026–5033. IEEE,78

2012.79

3

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org

	Motivation
	Neural Network Autoencoders
	Current Work

