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Abstract

Pain assessment is a hard, subjective, and critical problem in many medical sit-1

uations. Thus, many computational approaches have been developed for pain2

detection and estimation using different types of data [1, 2, 3, 4, 5, 6]. We propose3

a guided-learning by warping the appearance surround the facial action units of4

pain (AUs). Sequences are processed to extract the temporal correspondence of5

facial features. Each sequence is generated from the original videos and must rep-6

resent a single-stimulus effect in a short period, so we develop generation policies.7

Experimental results on the publicly available UNBC-McMaster database have8

demonstrated that our approach overcomes the-state-of-the-art.9

1 Methodology10

1.1 Dataset description11

The UNBC-McMaster dataset [7] records 129 patients self-identified with chronic shoulder pain. In12

each video, the patient moves one arm, then, each frame is evaluated by the PSPI metric. Additionally,13

the dataset includes 66 facial landmarks per frame computed by an Active Appearance Model (AAM).14

Each sequence presents several disturbances in its pain level even though there is just one pain15

stimulus — higher the pain intensity, shorter its duration due to the patient’s reflexes.16

1.2 Pre-Processing17

We apply a three-step pipeline: masking, frontalization, and resize. First, we calculate the facial18

landmarks to apply the convex hull algorithm for masking. The frontalization aims to solve the19

camera perspective error by estimating the projection matrix [8]. We use frontal-view markers from20

a pre-trained 3D-model [9] as a reference to calculate the camera matrix and the projection matrix.21

The projection matrix maps the original image to get the canonical normalized appearance, which22

undergoes a smooth symmetry process. We select the landmarks which surround the facial action23

units of pain to preserve the original features after frontalization.24

1.3 Data Balancing25

The unbalance affects every distribution, including samples per patient and pain levels. Sequence26

balancing has two stages; in the first one, the sequences split to generate new sub-sequences. In the27

second stage, we design downsampling and data augmentation policies considering that the label of a28

sub-sequence is its last frame’s label.29

Sub-sequence generation: The sequences split into a-length subsequences, considering a single-30

stimulus response cycle and painless segments. At the beginning of a sub-sequence, there may be b31
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painless frames. The sub-sequences generation steps are: (1) the sequences split into single-stimulus32

response cycles and painless sub-sequences; (2) in case that a new cycle is a replica then it is attached33

to the previous period, however, if gradients change abruptly, then it is considered as a new cycle;34

(3) eliminate the sub-sequences with sizes smaller than a; and, (4) multiple sub-sequences are made35

using a displacement window over the previous fragments.36

Balancing policies Let M[p,l] a the data distribution matrix over the patients and pain levels, being37

P and L the set of patients and levels, respectively. T[p,l] is the scaling matrix that balanceM[p,l], being38

τmax its fixed maximum value. When τ is less than 1, then downsampling is done with a probability39

of τ ; else, augmentation policies run with same odds, except for the facial affine deformations. The40

policies include rotations (3◦, 6◦ and 9◦), vertical flipping and facial affine deformations. Facial41

deformations strongly affect the feature vector depending on its magnitude and location. By orienting42

the distortions, we seek to reinforce the pain features representation. We use Delaunay triangulation43

and piecewise-affine warping for the facial deformations. Deformations intensity depends on the44

landmark’s relationship with the facial action units of pain proportionally from 0.2% to 10%.45

1.4 Proposed Architecture46

Figure 1 illustrates the spatiotemporal architecture. We employ the fc6 layer outputs of a fine-tuned47

VGG_faces [10] as feature vectors due its temporal invariability. The fine-tuning handles an SGD48

optimizer with β = 0.9, α = 1e − 3 and a mini-batch size of 100. A two-layer GRU architecture49

correlates the feature vectors of the sequence. GRU units face the gradient vanishing problem in short50

sequences and reduce training time. Then, the data split randomly into 80% as the training set and51

20% as the testing set using an RMSprop optimizer with α = 1e− 4.52
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Figure 1: An overview of the proposed spatiotemporal architecture. Red: A pre-trained CNN perform
the spatial extraction of features vectors (blue). Yellow: a two-layer GRU network explorers the
temporal correspondence among the features vectors.

2 Results and Comments53

Table 1 shows the comparison of the-state-of-the-art results for both analyses. Our results overcome54

previous works almost in every metric, except for the geometric approach raised by Rathee et al. [11].55

Data distribution has a high-impact over the features representation; hence, data balancing acquires56

quite an importance. Our proposal faces the unbalance by structured augmentation policies, alongside57

a fine-tuning step for the spatial analysis and a pre-processing stage to ease the spatial analysis.58

MSE PCC ICC ACC
Florea et al. [12] 1.18 0.55 - -

Kaltwang et al. [13] 1.39 0.59 0.50 -

Rathee et al. [11] - - - 0.96
Our 0.634 0.692 0.529 0.834

MSE PCC ICC ACC
Zhou et al.[1] 1.54 0.65 - -

Nasrollahi et al.[2] - - - 0.619

Rodriguez et al.[3] 0.74 0.78 0.45 -

Our 0.622 0.687 0.615 0.854

Table 1: Comparison of the-state-of-the-art metrics at frames-level (left) and sequences-level (right).

In the future, we are planning to untangle high-level expression and identity features from low-level59

pain features before the temporal analysis.60
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