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Abstract

The increasing influence from users in social media has made that Aggressive1

content propagates over the internet. In a way to control and tackle this problem,2

recent advances in Aggressive and offensive language detection have found out that3

Deep Learning techniques get good performance as well as the novel Bidirectional4

Encoder Representations from Transformer called BERT. This work presents an5

overview of Offensive language detection in English and the Aggressive content6

detection using this novel approach from Transformer for the case study of Mexican7

Spanish. Our preliminary results show that pre-trained multilingual model BERT8

also gets good performance compared with the recent approaches in Aggressive9

detection track at MEX-A3T.10

1 Introduction11

The exponential growth of social media such as Twitter and community forum has revolutionized12

the communication and content publishing, but it also increased explosively the propagation of the13

hate speech [1, 2, 3]. thus nowadays offensive language is pervasive in social media, this content14

which has profanity, abusive, aggressive or any kind of words that disparages person or a group is15

considered hate speech.16

Social media platforms and technology companies have been investing heavily in ways to cope with17

this offensive language to prevent abusive behavior in social media [4] One of the first action for18

tackling this problem was the human control over those text content and due as a manual filtering19

is very time consuming and as it can cause post-traumatic stress disorder-like symptoms to human20

annotators, the most effective strategy is use computational methods to identify offense, aggression,21

and hate speech in user-generated content. This topic has attracted significant attention in recent22

years as evidenced in recent publications [5, 6, 7] and in order to improve the research efforts in23

Spanish Language, we propose to find out how deep learning in NLP techniques can contribute to24

improve to the identification of offensive and aggressive in Spanish.25

2 Related work26

the research of Offensive Language have been increasing in the last years [6, 8, 9]. the scientist have27

proposed various methods to get features, because on of the most interesting aspect to distinguish28

approaches is which features are used.Thus, one of the features most used with deep learning is29

the simple surface features such as unigrams and a larger n-grams [1, 10, 11] and find out that that30

character n-grams has better perform than tokens.31

In contrast to features extractions, the classification methods for Offensive Language detection are32

predominantly supervised learning approaches [12]. The first scopes focus on manual features33
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engineering that are then consumed for a Machine learning algorithm such as SVM [2, 6, 11], Naive34

Bayes [6], Logistic Regression [13, 4], On the other side, recent researches [10, 14, 8] works show35

up that use deep learning paradigms which employs neural networks to automatically learn abstract36

features representations has better performance. However, recently Word Embedding trained in neural37

network have been show applied successfully [1, 7], while another approach appear this year using38

Bidirectional Encoder Representation from Transformer called BERT [15], which give significant39

improvements not only in this task if not in others. Although all of those techniques are applied to40

the English language, recently IberEval and IberLEF for Iberian Languages Evaluation workshops41

released the task with Aggressive identification task in 2017.1 In order to develop this task, so far in42

Spanish the main classifier used is SVM and recently approach in deep learning use CNN [16].43

3 Preliminary Approach44

In order to identify the Spanish Aggressive language in social media, we decided first re-implemented45

the current work which achieved good performance in English Offensive Language as it shows in our46

related work the Deep Learning classification methods CNN, SVM, BERT standing out. At first we47

decided to apply those Deep Learning classification models in Mexican Spanish DataSet(MEX-A3T)48

(see image 1), as we found that BERT classifier is highly effective in identifying offensive content49

in English, then we implement multilingual BERT for Aggressive detection in Mexican Spanish.50

Although the preliminary results show that bert-base-multilingual-cased has a good performance on51

this Spanish task, there are still many things to accomplish and improve this model. We surprisingly52

found that many words are not considered for instance: “hola” is not in the vocabulary, this is53

because possibly the selection of vocabulary is data-driven, on the other hand, this method provides a54

good balance between the characters and words delimited models and it is really good identifying55

common words like: “si, no, contrario, excepto”, showing its effectiveness in understanding56

the text context better than the previous pre-trained such as ELMo. Our preliminary accuracy is57

shown in the table 1 below.58

Figure 1: Left: MEX-A3T DataSet distribution 35.4% (green) AGGRESSIVE, 64.6 % NO AG-
GRESSIVE (pink) ,Right: Data labeled distribution. Below is the sample to feed in BERT

Table 1: Preliminary results for the aggressiveness identification

DATASET Model Accuracy

MEXT-A3T SVM [17] 0.67
MEXT-A3T DNN [18] 0.73
MEXT-A3T BERT 0.70

1MEX-A3T: Authorship and aggressiveness analysis in Twitter case study in Mexican Spanish
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