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1 Introduction1

Knowledge bases (KBs) play a fundamental role in compiling human knowledge. They structure2

open information available at the web over topological and non-topological relations. Despite the3

success of KBs as core resources on multiple tasks, they usually experience incompleteness and noisy4

information. To address this issue, several previous works have proposed techniques to predict and5

infer new relationships from the existing information aiming at improving the completeness of the6

KB [Socher et al., 2013, Bordes et al., 2013, Trouillon et al., 2016].7

In this last decade, methods that learn embeddings representations of multi-relational data (e.g., KBs,8

ontologies, and knowledge graphs (KGs)) have emerged with good performance on tasks like link9

predicton [Socher et al., 2013, Bordes et al., 2013, Trouillon et al., 2016]. Such methods have been10

driven by the recent advances in learning representations of symbolic data methods (e.g., words).11

In the same context, techniques of graph embeddings such as DeepWalk [Perozzi et al., 2014] and12

Graph Neural Networks models [Wang et al., 2017, Hamilton et al., 2017a, Xu et al., 2019] have13

improved the capability of structure-related tasks, for example, node classification.14

However, we observe that most of the techniques aforementioned suffer at least two issues. On15

the first issue, most of them rely on transductive inference, and, as such, the embeddings are only16

learned to represent the KB components already known in training time. There are only a few recent17

approaches accounting for the Out-of-Knowledge-Base (OOKB) problem [Hamaguchi et al., 2017,18

Hamilton et al., 2017b, Shi and Weninger, 2018]. The second issue is related to the fact that most of19

the mentioned approaches explicitly include only entities and relations, leaving aside more general20

elements such as concepts and definitions. As a consequence, they ignore the topological structure21

underlying the concepts definitions and semantics of the KBs. Recently, some proposals have22

emerged to mitigate part of this issue by building the embeddings within more complex spaces rather23

than Euclidean to accommodate concepts and hierarchies of concepts. For instance, Holographic24

Embeddings [Nickel et al., 2016] and Poincaré Embeddings [Nickel and Kiela, 2017] seek to improve25

the representations by explicitly relating the latent hierarchies characterized on the KBs.26

As a consequence, we argue that two challenges arise to enhance the existing approaches. The first27

challenge is the development of an approach that enhances the link prediction task while providing28

inductive representations of the knowledge bases by considering: (i) the prediction of relations29

between existing entities ( i.e., traditional link prediction with closed-world KBC [Shi and Weninger,30

2018]), (ii) the prediction of relations between existing entities and new incoming entities ( i.e.,31

OOKB [Hamaguchi et al., 2017] and open-world KB [Shi and Weninger, 2018]), (iii) the introduction32

of new incoming relations between entities, (iv) the introduction of new concepts and (v) the prediction33

of new relations between entities and concepts. The second challenge relies on an approach for34

automatically learning topological relations between concepts and non-topological relations between35

entities. In this work, we stand for the discussion of the prior-mentioned challenges and how tackling36

each one could lead to the development of new techniques for embedding knowledge bases in a37

relational-oriented space and that consider predicting relations between seen and unseen entities.38
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2 Challenges39

The knowledge base completion (KBC) problem, is defined by assuming that a KB is incomplete and40

the objective is to identify possible triples that complete it. KBC is formulated as follows:41

Definition 2.1. Let KB = (E,R, T ) be an incomplete knowledge base, in which E is the set of entities, R is42

the set of relations, T is the set of triples T = {t|t = (h, r, t)}, where r ∈ R and h, t ∈ E. The objective is to43

find a new triple t = (x, k, y), where t /∈ T and x, y ∈ E to improve the completeness of KB.44

In this work, we acknowledge the importance of also including concepts into the KBC task. Therefore,45

we extend the above definition by the addition of one more element, namely KBe = (E,R,C, T ),46

where C is the set of concepts and T also includes triples of the form t = (ci, r, cj) and t = (e, r, cj),47

where ci, cj ∈ C and e ∈ E.48

Notwithstanding, for real cases, most KBs evolve over time, i.e., they incorporate, remove, and49

update concepts, entities, and relations. The classical definition of KBC does not explicitly include50

new unseen concepts, entities, and relations, which drives the first challenge. To address this KBs51

evolving nature, [Hamaguchi et al., 2017] defines the OOKB entity task, which consists of adding52

new unseen entities on the KB based on its relations. Along similar lines, [Shi and Weninger, 2018]53

define the closed-world knowledge graph completion (KGC) task and the open-world KGC task.54

Both works first introduce the need for updating (on inference time, i.e., without retraining the55

model) the embeddings space model with the newly learned representation of the unseen entities and56

relations. We advocate that they still miss a fundamental component of real-world knowledge bases:57

the introduction of new concepts and predictions of new relations between concepts and entities.58

On the second challenge, as surveyed by [Trouillon et al., 2019], the state-of-the-art on latent59

representations of knowledge bases, such as [Bordes et al., 2013, Trouillon et al., 2016], lacks the60

abilities to learn topological semantics and relations between concepts and between concepts and61

entities. Therefore, the challenge here consists of providing a technique able to generate embedding62

representations that incorporate relation semantics, structural properties of the KB and its concepts,63

entities, and relations.64

3 Our Vision65

In the portrayed perspective of this paper, a technique that produces adequate embedding represen-66

tations of KBs’ entities and their relations should consider not only those components but also the67

inner structure between all the elements whose semantics must be captured by a KB. Besides that, we68

claim that it is necessary for the emergence of a proper task to evaluate such technique in terms of the69

provided embedding and its induction capability for new coming concepts, entities, and relations.70

Like so, first, we extend the Definition 2.1 to augment the real-world KBC task in the context of KB71

embeddings. Then, we define a new task, named Knowledge Base Progression (KBP) as follows:72

Definition 3.1. Let KB = (E,C,R, T ) be an incomplete knowledge base, where E is the set of entities, C is73

the set of concepts, R is the set of relations and T is the set of triples, i.e., the set of the relationship between74

relations, concepts and entities. A knowledge base progression task defines, in inference time: (i) incorporate to75

the learned space-model of KB, (i).a, new unseen entities and concepts of a KB, KB′ = (E′, C′, R, T ′), where76

E′ − E and C′ − C is the set of unseen entities and concepts, respectively, or, (i).b, new unseen relations of a77

KB′, KB′′ = (E,C,R′′, T ′′), where R′′ ∩R = ∅; (ii) predict new relations between elements from sets E78

and C; and (iii) consider the KB’s structural properties, i.e., the topology of its concepts to provide relations79

between concepts and entities.80

Second, we point out some of the requirements that would make such a technique capable of solving81

the challenge defined in Definition 3.1. The technique should be able to learn an embedding space82

that considers the relational semantics and structural properties of the KB and its elements. Also, the83

embeddings of each KB’s element, i.e., concept, entity or relation should be provided by a learning84

function capable of generalizing the element regarding its set of associated triples, to provide support85

for new unseen elements (e.g., [Hamaguchi et al., 2017, Hamilton et al., 2017b]). Further, be able to86

predict new relations between the learned embeddings.87

4 Conclusion88

Our perception is towards a new technique able to learn embeddings representations of symbolic89

data in the form of multi-relational data. Also, we pointed out an extension of a traditional task in90

KBs representation learning. We argue in favor of a technique that takes into account the topological91

structure of the data, the semantics of relations and its elements, i.e., concepts, entities, and relations.92

Likewise, we define the pointed challenge as the Knowledge Base Progression problem. Potential93

future paths include the formal definition of this technique and extend existing benchmark on KBC94

problem for the new KBP challenge.95
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