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1 Research Problem1

Segmentation of anatomical structures is a fundamental task for biomedical image analysis. During2

the last years, convolutional neural networks (CNNs) proved to be highly accurate to perform3

segmentation in biomedical images [1, 2, 3]. One of the distinctive features of CNNs is the use4

of parameter sharing to reduce model complexity and introduce translation invariance. This is5

specially useful for tasks like image classification, where invariance to translation is a desired6

property. However, in case of anatomical structures in medical images where their location tend to7

be highly regular, this property leads to incorrect predictions in areas with similar intensities when8

enough contextual information is not considered. This issue can be alleviated by introducing prior9

knowledge about shape ant topology.10

One popular strategy to incorporate such priors into medical image segmentation using CNNs is11

to modify the loss used to train the model. The work of [4] incorporates high-order regularization12

through a topology aware loss function. In [5, 6], an autoencoder (AE) is used to define a loss term13

that imposes anatomical constraints during training. The main disadvantage of these approaches is14

that they can only be used during training of CNN architectures.15

On the other hand, post-processing methods (e.g. Conditional Random Fields [2]) to incorporate16

connectivity constraints into the resulting masks have also been considered in the literature. These17

methods are based on the assumption that objects are usually continuous and therefore nearby pixels18

should be assigned the same object label. Even if it is a valid assumption in general, they do not offer19

a straightforward way to incorporate more complex priors like convexity or shape restrictions.20

In this work, we introduce Post-DAE [7] (post-processing with denoising AE), a post-processing21

method which produces anatomically plausible segmentations by improving pixel-level predictions22

coming from arbitrary classifiers, incorporating shape and topological priors. The proposed method is23

rooted in the so-called manifold assumption [8], which states that natural high dimensional data (like24

anatomical segmentation masks) concentrate close to a non-linear low-dimensional manifold. We25

learn such low-dimensional anatomically plausible manifold using the aforementioned DAE. Then,26

given a segmentation mask SP
i obtained with an arbitrary predictor P (e.g. CNN or RF), we project27

it into that manifold using fenc and reconstruct the corresponding anatomically feasible mask with28

fdec.29

2 Experiments30

We benchmark the proposed method in the context of lung segmentation in X-Ray images, using31

the Japanese Society of Radiological Technology (JSRT) database [9]. We divide the database in 332

folds considering 70% for training, 10% for validation and 20% for testing. We train Post-DAE using33

Adam Optimizer with a loss function based on the Dice coefficient; a learning rate of 0.0001; batch34

size of 15 and 150 epochs. It receives 1024x1024 noisy binary segmentations as input. A degradation35

function φ is used to degrade the ground-truth segmentation masks.36
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We compare Post-DAE with a post-processing method based on a fully connected CRF [10]. Dif-37

ferently from our method which uses only binary segmentations for post-processing, the CRF38

incorporates intensity information from the original images. As baseline segmentation methods, we39

train two different models which produce segmentation masks of various qualities to benchmark40

our post-processing method. The first model is a CNN based on UNet architecture [1]. To evaluate41

the effect of Post-DAE in different masks, we save the UNet model every 5 epochs during training,42

and predict segmentation masks for the test fold using all these models. The second method is a RF43

classifier trained using intensity and texture features.44

3 Results and discussion.45

Figure 1 shows some visual examples and the quantitative results. Both figures show the consistent46

improvement that can be obtained using Post-DAE as a post-processing step, specially in low quality47

segmentation masks like those obtained by the RF model and the UNet trained for only 5 epochs.48

In these cases, substantial improvements are obtained in terms of Dice coefficient and Hausdorff49

distance, by bringing the erroneous segmentation masks into an anatomically feasible space. In case50

of segmentations that are already of good quality (like the UNet trained until convergence), the post-51

processing significantly improves the Hausdorff distance, by erasing spurious segmentations (holes52

in the lung and small isolated blobs) that remain even in well trained models. When compared with53

CRF post-processing, Post-DAE significantly outperforms the baseline in the context of anatomical54

segmentation.

Figure 1: Left: Qualitative evaluation of the proposed method. Right: Top row shows mean and std
for post-processing UNet predictions on the test fold at different training stages. Bottom row show
results for post-processing the RF predictions. The symbol ∗ indicates that Post-DAE outperforms
the other methods with statistical significance (p-value < 0.05 according to Wilcoxon test).

55

4 Conclusions.56

In this work we have showed, for the first time in the MIC community, that DAE can be used as57

an independent post-processing step to incorporate anatomical priors into arbitrary segmentation58

methods. Post-DAE can be easily implemented, using segmentation-only datasets or anatomical59

masks coming from arbitrary image modalities, since no intensity information is required during60

training. We have validate Post-DAE in the context of lung segmentation in X-ray images, bench-61

marking with other classical post-processing method and showing its robustness by improving62

segmentation masks coming from both, CNN and RF-based classifiers.63
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