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Abstract

This is a novel technique to find global explanations in binary classification machine
learning models by finding the salience of features. The explanation can be made on
categorical, continuous, and time series data. Coefficients from a Cox Proportional
Hazards regression explain the effect of variables upon the probability of an in-class
response for a score output from the black box model. The analysis is conducted
on a long short-term memory (LSTM) network.

1 Introduction

The method is derived using the assumption of an underlying Markov process and methods developed
in the field of Survival Analysis. The stochastic counting process is uses in-class or censored obser-
vations to derive a non-parametric statistic, out-of-class observations are truncated. The stochastic
process is an observation changing from out-of-class to in-class over the indexed value of the model
score. The index set used is the score output from the binary classification model.

2 Background

Methods of explanations for time series black box models include visualizations of the changes of
the internal state of the model over sequences of input and is conducive to what-if analysis [Strobelt
et al., 2018]. Another method is learned prototypes generated from the latent space of the model [Gee
et al., 2019]. Thirdly, sensitivity analysis [Tabatabaee et al., 2012] varies features over a range of
values to determine the variance in predicted values by features.

3 Theoretical analysis

X(s) is Markov if P (X(s) = x|X(sk) = xk, X(sk−1) = xk−1, ..., X(s1) = x1) = P (X(s) =
x|X(sk) = xk) for any selection of score points s1, ..., sk−1, sk such that s1 < ... < sk−1 < sk and
integers x1, ..., xk−1, xk. The Markov property is score-homogenous when the transition probabilities
only depend on the given score S [Paul and Baschnagel, 2013]. The definitions are derived from
parallel survival analysis equations in [Aalen et al., 2008].

Let the model score S be a random variable with the inclusion function I(t) = P (S > s). The
inclusion function, the conditional probability that the response will occur with at least the score s
given that the response has not received a lower score, is estimated by the product limit estimator
using the multiplication rule [Kaplan and Meier, 1958] and results in the recall curve. Let f(s) be
the density of S. The standard definition of the hazard rate α(s) of S is the following with ds being
infinitesimally small.

I(s) = P (S > s) = 1− F (s) =

∫ ∞
s

f(s)ds (1)
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Covariate Coeff exp(Coeff)
se(Coeff) z P value
MSE Ratio

SMART 197 i 0.4998 1.6484
0.1634 3.059 0.00222
+8.1%
SMART 242 1.3477 3.8486
0.5083 2.652 0.00801
+3.9%

Table 1: CPH Explanation with Time Dependent Data

I(s) =

K∏
k=1

I(sk|sk−1) (2)

α(s) = lim
∆s→0

1

∆s
P (s ≤ S ≤ s+ ∆s|S ≥ s) =

f(s)

I(s)
(3)

Explanations of the black box classification model can be found using the input variables as covariates
in a Cox proportional hazards (CPH) regression model to explain the scores of in-class observations.
The explanatory model is used to find the baseline hazard rate α0(s). The effect of the covariates act
multiplicatively on the baseline hazard.

α(s|Z) = α0(s)c(βsZ) (4)

α(s|Z) = α0(s) exp(βsZ) = α0(s) exp(

p∑
k=1

βkZk) (5)

α(s|Z)

α(s|Z∗)
=
α0(s) exp(

∑p
k=1 βkZk)

α0(s) exp(
∑p

k=1 βkZ
∗
k)

= exp(

p∑
k=1

βk(Zk − Z∗k)) (6)

4 Experimental evaluation

The data chosen is time to failure data of Blackblaze hard drives. The network has three LSTM layers
followed by three fully connected layers and a lookback window of 5 days of SMART statistics.
The LSTM received 0.7571 accuracy, 0.9429 precision, and 0.5928 recall. Salient covariates are
selected through forwards and backwards selection. The regression shows that a hard drive is 1.6484
times more likely to fail if it has a value greater than zero for SMART statistic 197 and 3.8486 times
the normalized SMART 242 statistic times more likely to fail. Sensitivity analysis found the most
variation in model performance by altering the values in SMART 184 End-to-End Error +23.1%
MSE Ratio and SMART 7 Seek Error Rate +22.1% MSE Ratio.

5 Conclusion

The method describes a non-parametric counting process to define the cumulative probability of
an in-class record occurring by a score segment through a Markov process state space model and
formulates a new definition for the recall curve. Explanations are provided even when the features
are time series and in order dependent models such as recurrent neural networks.
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