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Abstract

Common sense reasoning relates to the capacity of learning representations that1

disentangle hidden factors behind spatiotemporal sensory data. In this work, we2

hypothesize that the predictive coding theory of perception and learning from3

neuroscience literature may be a promising candidate for implementing such4

common-sense inductive biases. We build upon the PredNet implementation by5

Lotter, Kreiman, and Cox (2016) and extend its application to the challenging6

task of inferring abstract, everyday human actions such as cooking and diving.7

Our transfer learning experiments demonstrate good generalization of learned8

representations on the UCF-101 action classification dataset for both visual and9

auditory modalities.10

1 Motivation and Methods11

The PredNet model by Lotter et al. (2016) was shown to learn representations that disentangle latent12

variables correlated to the movement of objects in synthetic and natural images. We extend their study13

to address the following questions: (1) Can unsupervised predictive coding models learn higher-level14

spatiotemporal concepts, namely quotidian activities such as driving or exercising? (2) Are predictive15

coding inductive biases general enough so that these models can also learn from auditory information?16

Predictive coding networks Inspired by the predictive coding theory (Friston & Kiebel, 2009),17

the PredNet model relies on the idea that to predict the next video frame, a model needs to capture18

latent structure that explains the image sequences. The model architecture consists of recurrent19

convolutional layers (Xingjian et al., 2015) that propagate bottom-up prediction errors, which are20

used by the upper-level layers to generate new predictions. For implementation details, please refer21

to the PredNet architecture description by Lotter et al. (2016).22

Unsupervised training We evaluate predictive coding models trained on different quantities of23

unlabeled videos. The main idea is that the more data we use to train the model, the more "common24

sense" it should get about how events unfold in the world and, as a consequence, it should be better at25

disentangling latent explanatory factors. Using as starting point a PredNet pre-trained on the KITTI26

dataset (Geiger, Lenz, Stiller, & Urtasun, 2013), we further train the model with unlabeled videos (6727

hours of visual data and 37 hours of auditory data) from the Moments in Time dataset (Monfort et al.,28

2018), a large-scale activity recognition dataset.29

Supervised action recognition For each sequence of ten frames in the input (video frame or audio30

spectrogram), the PredNet activations for each layer are spatially pooled to match the higher-level31

layer dimensions and concatenated to form one tensor representation with dimensions (16, 20, 339)32

corresponding to a one-second spatiotemporal pattern. Those representations are then flattened and33

used as input to an action classifier consisting of a Long Short-Term Memory (LSTM) (Hochreiter34

& Schmidhuber, 1997) layer (64 hidden units) and a fully connected layer followed by a softmax35

activation that outputs a probability distribution over the UCF-101 action classes.36
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2 Results and Discussion37

Action recognition using visual data The predictive coding model with random weights gives a38

poor top-1 accuracy of 1.64%, which is slightly above the random baseline (Table 1). However, when39

we train the classifier with features generated by the 67-hour predictive coding model, the accuracy40

increases to 51.9%, which is competitive with results from the unsupervised "tuple verification" by41

Misra, Zitnick, and Hebert (2016) and an LSTM classifier using the Inception convolutional network42

(Carreira & Zisserman, 2017). It is worth to note, however, that in both of those approaches, the43

convolutional models are fine-tuned end-to-end using the UCF-101 labels. In our case, the predictive44

coding weights were kept fixed, and only the weights from the LSTM classifier were optimized for45

the specific task.46

Predictive coding can also model auditory data We trained the LSTM classification model using47

predictive coding representations extracted using audio spectrograms from the 51 action classes of48

the UCF-101 dataset that contain auditory information. The top-1 accuracy results are reported in49

Table 2. As expected, the audio information is much less useful to distinguish action classes, as many50

videos have soundtracks and other kinds of audio data that are completely unrelated to the activity.51

Still, there was a significant improvement from the classifier trained on the features generated by the52

random-weights model to the classifier based on the 37-hour pre-trained model. For comparison,53

we also report the results of the Caffenet version by Wang, Yang, and Meinel (2016), which is a54

convolutional network trained on audio spectrograms. Remarkably, our simple one-layer LSTM55

classifier is competitive with their complex convolutional model trained end-to-end using action class56

labels, which demonstrates the generality of the predictive coding inductive bias.57

Table 1: Visual action recognition. Accuracies (top-1 percentage) for different pre-trained models on
the test set of UCF-101 split 1. We also include results for the CNN tuple verification (Misra et al.,
2016) and an LSTM classifier trained on top an Inception convolutional network trained from scratch
(Carreira & Zisserman, 2017).

Features + Classifier Accuracy (%) Pre-training dataset

PredNet Video random + LSTM 1.64 -
PredNet Video 67h + LSTM 51.9 Moments in Time

CNN tuple verification 50.2 UCF-101
Inception + LSTM 54.2 -

Table 2: Auditory action recognition. Accuracies (top-1 percentage) for different models on the test
set of UCF-101 split 1 (only videos from the 51 classes that contain audio).

Features + Classifier Accuracy (%) Pre-training dataset

PredNet Audio random + LSTM 22.7 -
PredNet Audio 37h + LSTM 24.8 Moments in Time

Caffenet (Wang et al., 2016) 25.2 -

3 Final Remarks58

This work explores unsupervised learning from spatiotemporal data and uses video understanding59

tasks as a proxy to evaluate the quality of learned representations. We focus on models that can60

learn from large amounts of unlabeled videos and use this experience to solve downstream tasks61

involving smaller labeled datasets. Therefore, we do not pursue the solution of the action recognition62

problem itself, for which all the state-of-art approaches depend on a copious amount of labeled data63

for pre-training (Carreira & Zisserman, 2017). Our results show that predictive coding representations64

learned using the Moments in Time dataset (Monfort et al., 2018) (without in-domain fine-tuning) are65

competitive with other unsupervised baselines when evaluated on UCF-101 action recognition task.66
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