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Abstract

Genomic anomalies, or variations, are often shared between members of the same1

species. Although rare, these changes may result in disease or an increase in host2

fitness. Most approaches for detecting structural variation rely on high quality3

data and are typically limited to one type of structural variant such as deletions or4

inversions. We propose a new data augmentation method to mitigate errors in low5

quality DNA sequencing data by leveraging offspring DNA information to predict6

genomic variants in their associated parent. To our knowledge, this is the first time7

such an approach has been proposed to detect multiple structural variation classes,8

including complex variants, using related individual data. The author(s) of this9

work identify as Latinx.10

1 Introduction - Biological Motivation11

Advances in DNA sequencing have increased the number of large sequencing studies, with the goal of12

quantifying genomic variation and its influence on both genotypes and phenotypes in species [1, 2, 3].13

These genomic anomalies may appear as a single basepair change (SNP) or as a rearrangement14

of a larger region. Detecting these larger regions, known as structural variants (SVs), remains a15

challenging problem. This is particularly true when incorporating low quality DNA sequencing data16

[4, 5, 6]. The ability to detect such genomic variation remains an important area of study, as these17

changes have applications in detecting negative and positive outcomes (e.g. cancer susceptibility and18

increased fitness) [7, 8, 9, 10].19

Of particular interest is being able to detect complex structural variants, including deletions, inversion,20

translocations, or duplications [11]. This typically involves aligning sample DNA to a known refer-21

ence genome and looking for differences. In certain cases, these variations may occur simultaneously,22

resulting in complex variants (see Fig. 1) [12]. Our work builds upon previous methods by using23

related individuals – in this case, offspring data – as a data augmentation method [13, 14, 15, 16, 17].24

2 Method25

Our method was designed with the intention of identifying the various structural variants from26

features provided from aligned sequencing data using samtools [18]. Rather than identifying all of27

the associated structural variants using a single model, each model was trained to identify each variant28

individually. This required converting a multi-class problem into a series of binary classification29

problems. By focusing each model on a single class, the capability of the model is more robust to the30

task and will not suffer because of the severe class imbalances present in other classes. After testing31

on various ensemble methods, the optimal method for classification across all classes was gradient32

boosting. Gradient boosting is an additive method that seeks to minimize a given cost function by33

incorporating new decision trees to compensate for the shortcomings of previous decision trees. New34

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



Figure 1: Top. We simulate the parent signal by introducing a set of 169 structural variants (deletions,
duplications, insertions, and inversions) in Chromosome 1 of the human genome reference (relative
position shown). Bottom. We illustrate inversion-deletions – known as complex structural variants –
where variation occurs simultaneously and an inversion event is flanked by two small deletion events.

trees are added to the ensemble using a form of functional gradient descent where the new tree’s35

parameters are chosen to minimize the loss of the cost function [19].36

2.1 Simulated Data37

We first simulate a number of structural variants in an individual and then try to predict the structural38

variants introduced in the simulated data. Moreover, we wish to correctly identify when there39

are complex rearrangements introduced with low-quality data. The parent signal was simulated40

using SURVIVOR with 50 (of each) duplications, insertions, and deletions, 4 inversions, and 541

inversion-deletion events [20]. This tool was also used to simulate 8 offspring based on this parent.42

3 Results43

Four models were trained on aligned, low quality* DNA sequencing offspring data and then tested on44

the parent sequencing data. Fig. 2 demonstrates the effectiveness of our method and we note that45

as the number of offspring increases, the area under the curve (AUC) increases with the number of46

offspring. Although our method only uses discordant data, sequencing data that did not match to the47

reference, our model was able to correctly classify 13 insertion and 6 inversion (3 regular, 3 complex)48

events, while Lumpy detected 0 insertions and the same 6 inversions. For future work, we plan on49

incorporating more features with concordant and split-read sequencing data for all individuals. We50

also plan on taking advantage of stacking (an ensemble learning technique) to improve classification.51

Figure 2: Left. Receiver operating characteristics (ROC) curve for deletions for the parent signal
using 1 through 8 offspring sequencing data. Right. ROC curve for inversions for the parent signal
training our model with 1 through 8 offspring sequencing data. Both figures include the AUC and F1
score as performance metrics.
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