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Abstract

Currently, air pollution is a severe problem, because pollutants such as Particulate1

matter of 2.5 micrometers affect human health. Therefore, several works address2

the prediction of this pollutant, using statistical methods and machine learning.3

However, these predictions are performed in places of a city, where air quality4

monitoring stations are available, which is not always possible due to their high5

implementation and maintenance costs. Thus, in this work, we propose an architec-6

ture based on a Conditional Generative Adversary Network to create new synthetic7

data and interpolate this pollutant in places where monitoring stations are missing.8

1 Introduction9

Air pollution is an essential problem at this time. One well-known pollutant is the Particulate Matter10

of 2.5 micrometers (PM2.5); this is dangerous for human health because it causes respiratory and11

cardiovascular problems [1].12

Recent works on this topic that addresses the prediction of this pollutant are carried out only in some13

places of a city, where air quality monitoring stations are available.14

Therefore, to solve this limitation we propose an architecture based on a Conditional Generative15

Adversarial Network (cGAN) [2], from its capacity of creating synthetic data to interpolate this16

pollutant in places where air quality monitoring stations are missing. Moreover, we will perform a17

comparative study of forecasting models to find the best prediction of this pollutant, considering real18

and synthetic data.19

2 Related work20

There are two methods to the emission, dispersion, and prediction of pollutant concentrations,21

which are deterministic methods and statistic methods. Deterministic Methods adapt meteorological22

principles based on Atmospheric physics and chemical models to simulate the diffusion and dispersion23

of pollutant concentrations in a region-specific, two well-know models of this type are WRF-Chem24

[3] and CMAQ [4].25

On the other hand, statistic methods generally are based on ARIMA[5], Support Vector Regression26

(SVR) [6] and Support Vector Machine (SVM) [7]. In addition, conventional neural networks are also27

generally considered, such as; MLR [8], RBF NN [9]. Deep neural networks, such as; Long-term28

memory and its variations, such as LSTME [10] and LSTMED [11], and the combination of a stacked29

automatic encoder (SAE) and a logistic regression (LR) [12]. About interpolation, Deep Air Learning30

(DAL) [13] is an architecture based on space-time learning to interpolate pollutants.31

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



3 Proposal and current progress32

We propose an architecture based on cGAN and forecasting model to interpolate and predict PM2.5.33

We got a dataset of Beijing, which contained the information of meteorological variables and pollutant34

values from 35 air quality monitoring stations distributed in Beijing, then we considered PM2.535

values and meteorological data such as real data for cGAN, to generate new synthetic values. After,36

we will process real data and synthetic data by forecasting models. See Figure 1.37

Figure 1: Architecture to interpolation and prediction of PM2.5. Source: Own.

Currently, the interpolation part is done, we selected data from 34 air quality monitoring stations38

as training set and one monitoring station as testing set, where we used fully connected layers39

in generator and discriminator, obtaining a root mean square error (RMSE) of 0.00589168 in the40

testing, in figure 2, we can see the comparison between the actual data of the testing set and the data41

interpolated by cGAN.42

Figure 2: Scatter plot. Comparing real PM2.5 with interpolated PM2.5. Source: Own.

Therefore, in the Figures 3a and 3b we can see the result of the interpolation to all places, without43

monitoring stations, considering two date-times with one hour of differential.44

(a) 2017-04-03 03:00:00 (b) 2017-04-03 04:00:00

Figure 3: Two interpolations of PM2.5 in two different date-times. Source: Own.
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