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Abstract

Motor imagery (MI) is a mental process that can be recorded by means of an1

electroencephalogram (EEG) and produces event-related desynchronization (ERD)2

and synchronization (ERS) patterns. These patterns exhibit inter and intra-subject3

variability, which makes models to be trained specifically for each person, requiring4

long calibration sessions. We introduce a method which can be trained with MI5

EEGs from different people. We demonstrate with experiments on a public data set6

that our approach achieves state-of-the-art accuracy on MI EEG classification.7

1 Introduction8

A brain-computer interface (BCI) is a communication system between the brain and some external9

device. They are mainly employed in rehabilitation of people with motor impairments, virtual world10

navigation and control of spelling devices. Among the many mental processes that BCIs can take as11

input to produce commands to an external device, motor imagery (MI) is one of the most used.12

MI is a mental process that consists in rehearsing a movement mentally without any kind of muscular13

activity as a result [7]. The execution of a MI task produces two kinds of patterns in the electrical14

activity of the brain. These patterns are called event-related desynchronization (ERD) [11] and event-15

related synchronization (ERS) [9]. ERD/ERS have both time and frequency domain representations.16

When recorded in an electroencephalogram (EEG), in the time domain, an ERD represents an17

amplitude decrease of rhythmic activity in the ongoing EEG signals, and an ERS represents an18

amplitude increase. In the frequency domain, an ERD/ERS represents a power decrease/increase in19

certain frequency components within mu (8-13 Hz) and beta (13-30 Hz) rhythms [10].20

ERD/ERS can be used to distinguish different MI tasks, however, the identification of these patterns21

is challenging because, besides the low signal-to-noise ratio, they present inter-subject variability [2],22

i.e., two subjects can execute the same motor imagery task, but ERD/ERS may happen in different23

frequency bands, and intra-subject variability [12], i.e., ERD/ERS patterns related to motor imagery24

can even change over time in the same person, due to factors such as motivation or fatigue [16]. As a25

result of that, the standard approach is to employ a filter bank [1], that decomposes the EEG signals26

into multiple frequency bands, and the Common Spatial Pattern (CSP) [6, 3] method for finding27

spatial filters for each frequency band. Features are extracted after projecting filtered EEG signals into28

the CSP filters. Then, these features are classified using some machine learning method. However,29

the effectiveness of CSP depends on the EEG frequency band [4, 8]. Consequently, a wrong choice30

of the frequency bands in the filter bank may lead to a poor classification performance.31

We propose a method based on a deep learning model able to learn suitable bandpass and CSP filters32

for MI classification. We evaluated the performance of our method on the public data set 2b of the33

BCI Competition IV [15]. As we will demonstrate, our method not only achieves state-of-the-art34

accuracy on MI EEG classification, but also it is efficient as it uses only two bandpass filters.35
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Figure 1: Architecture of our model. It is composed of two 1-D convolutional layers and five fully
connected layers all connected sequentially. The input is a tensor of size m× 250, where m = 3 is
the number of EEG signals. The first 1-D convolutional layer has p = 2 kernels of size t = 125. The
second 1-D convolutional layer has p×m = 6 kernels of size m× 1. The output x(2) ∈ IR6×250 is
reduced to x(3) ∈ IR6 after calculating the log-normalized average power of each signal.

2 Our method36

Our method is built upon a deep neural network and is composed of 7 layers as illustrated in Figure 137

and the input is an EEG segment X ∈ IRc×n, where c is the number of signals and n is the number38

of timesamples. The first 1-D convolutional layer is composed of p kernels. The shape of these p39

kernels is restricted to be defined by the following bandpass filter function:40

g(t, f1, f2) = 2f2sinc(2πf2t)− 2f1sinc(2πf1t)

where t represents the number of elements in the filter and sinc(x) = sin(x)/x, as in [13]. Hence,41

the only parameters to be learned are the lower and higher cutoff frequencies f1 and f2 respectively,42

and not all the elements of the filter. Each kernel is applied depthwise, i.e., each EEG signal is43

convolved with each kernel defined by g. As a result of that, this layer multiplies the number of EEG44

signals by a factor of p. The second 1-D convolutional layer is composed of p ×m kernels (a set45

of m kernels for each kernel in the previous layer) of size m× 1, where m is the number of EEG46

signals. Each kernel represents a CSP filter fcsp ∈ IRm. The convolutions of the first and second47

layers can be seen as the depthwise convolution and 1 × 1 (pointwise) convolution of a depthwise48

separable convolution [14, 5]. No activation function is applied to the output of the kernels.49

From the output of the second convolutional layers is calculated the average power
∑n

i x
2
i /n of each50

EEG signal x ∈ IRn and normalized using the logaritmic function loge. These features are feeded to51

a sequence of 4 fully connected layers (FC) composed of p ×m units each with ReLU activation52

function. The last FC layer has only 2 units, one for each class of MI task. Finally, the output of the53

last FC layer is normalized using the softmax function. We used stochastic gradient descent with54

Adam update rule to minimize the cross-entropy loss function, with a learning rate of 0.1.55

3 Experiments and results56

We have evaluated our method on the data set 2b of the BCI Competition IV [15]. This data set57

includes EEGs composed of three signals (from electrodes C3, Cz, and C4) with 4580 trials of two58

classes of MI tasks (MI of left hand and right hand), from nine subjects with a sampling frequency59

of 250 Hz. We divided each trial into 1 second windows, obtaining a total of 9160 samples. These60

samples were divided into training set (8200 samples) and test set (960 samples) maintaining the61

proportion of trials of each person for both sets.62

After testing different architectures with one, two and three kernels in the first layer of our model,63

we found that two kernels, i.e. two bandpass filters, in the frequency bands of 9.1 − 13.3 Hz and64

13.7 − 18.25 Hz, are enough to achieve state-of-the-art accuracy of 85.15%, compared to other65

methods evaluated on the same data set. In addition, our method uses only two frequency bands for66

classification, that is, less than the average quantity of filters commonly used.67

We believe that these frequency bands contain the most reactive components for identifying ERD/ERS68

of MI. We plan to evaluate our method on other data sets to corroborate our findings.69
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