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Abstract

Motivated by the desire to understand genomic functions through interactions be-1

tween genes and gene products, the research in the area of gene regulatory networks2

has become a very important object of study in recent years. Probabilistic Boolean3

Networks (PBN), which are rules-based dynamic systems, are some of the most4

studied mathematical models to represent networks and their regulations. However,5

frequently their representation, regulation, and interactions between genes are6

overly complex to learn and control, requiring a complex model. Reinforcement7

Learning (RL) is an interesting technique to deal with this problem because it8

can learn solutions without the need of a model. This approach is used to train9

autonomous agents who can find solutions to complex problems, including those10

of regulation and relationships between genes. But its classical approaches are11

slow when having to learn tasks with many states especially when these tasks12

have multiple goals and agents. Besides that, learning bad solutions can make the13

learning process even more difficult and slow. Therefore, some RL approaches and14

techniques need to be tested in order to verify the best way to flexibilize, adapt and15

improve them to intervene and control the gene networks.16

1 Introduction17

In most living organisms, the genome is concerned with the information that governs life, death18

and reproduction. Coordinated interactions between genes (both protein coding DNA sequences19

and non-coded DNA regulatory sequences), RNA, and proteins, form a GRN. If it is possible to20

build good GRN models and to apply intervention techniques to control genes, it might be possible21

to develop better treatments for diseases resulting from aberrant gene regulation, like cancer [18].22

However, how to model efficient intervention techniques is an open question.23

An important class of network models is the PBN model [12] in which each node (gene) can have two24

possible values, on (1) or off (0), and the way genes interact with each other is formulated by logic25

functions. Although this model is conceptually simple, it captures some fundamental characteristics26

of genetic regulation, encapsulating physical and biological information flow by means of rule-based27

structures. In addition, boolean models can be physically implemented by electronic circuits, and28

demonstrate rich dynamics that can be studied using mathematical theory, signal processing, and29

machine learning techniques, e.g., Markov chains [5] and Markov Decision Processes (MDP) [10].30

RL [15] is an extensively used technique for learning how to solve MDPs through experimentation.31

First an action that affects the environment is chosen, then the agent observes how much that action32

collaborated to the task completion through a reward function. An agent can learn how to optimally33

solve tasks by executing this procedure multiple times and RL techniques have been used to solve34

many challenging tasks. The main question to be explored throughout this work (in progress) is35

how RL algorithms can be adapted to enable learning intervention policies, maintaining a biological36
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system in one desired state, even more so for systems with multiple objectives [11, 17]. The main37

challenge to be solved is that RL techniques require many interactions with the actual system, which38

is usually unfeasible because incorrect interventions could harm the biological system. However,39

like in the human learning process, previous knowledge can greatly accelerate the learning of a new40

task and might help designing RL techniques applicable to gene-intervention learning [7]. Another41

question to be answered is how to model GRN inference with RL. The reward function would include42

conflicting objectives [17, 3], which could further hamper RL traning [4].43

Many solutions were developed to address those two issues in general-purpose RL techniques, such44

as Transfer Learning (TL) and options-based ones. In the work [1] for example, it was proposed a45

framework which provides a way to generalize and reuse knowledge between tasks by encapsulating46

states and sequences of actions performed by agents, and we believe it can be easily incorporated47

into a variety of different RL algorithms and tasks, accelerating their learning processes.48

These problems may consist in using RL to improve some algorithms or applying some different49

ways of solving problems. Such issues may be related to discovering or control the features of the50

GRN [13]; revealing attractor basins [8] in which RL was used sometimes in order to find subgoals in51

solutions [3]; allowing humans to intervene in the GRNs while the agent learns through RL algorithm52

[14], where different other algorithms can be tested; and approximation functions together with RL53

to regulate networks [7].54

2 Research Goal and Expected Contributions55

The main objective of this work is to develop RL algorithms to successfully learn how to infer and56

intervene in GRNs to maintain a biological system in a desirable state. Solving this challenge57

includes (i) finding the best way of modeling the problem as an MDP; (ii) coping with the curse of58

dimensionality inherent from the domain; and (iii) proposing ways to safely evaluate the proposed59

methods without harming experiment subjects.60

3 Preliminary Results61

Previous works mostly focused on improving general-purpose RL methods, which we now plan62

to apply in this challenging domain. In order to define a representation which allows knowledge63

generalization, it was proposed an extension of the Options Framework [16], called Multiobjective64

Options (MOOpt) for Multiobjective Reinforcement Learning (MORL) problems [2, 3] , in which65

the algorithm PolicyBlocks [9] was extended to multiobjective domains and the knowledge obtained66

was transferred to new tasks. This proposed approach aimed at discovering single-objective options,67

evaluating them in a different state space, expecting to accelerate learning in MORL problems. In the68

papers [2, 3] they were only evaluated in the standard MDPs, and an evaluation to verify the benefits69

from using options with a more robust representation for RL problems (OOMDP) is presented in70

[1], as well as a probabilistic reuse of learned solutions. Another work that compares the use of this71

representation (OOMDP) with MOOpt against the MOOpt alone is currently under development.72

Those works might be a starting point in the investigation of how to use RL and to transfer useful73

knowledge to be applied to GRN inference and control problems.74

4 Next Steps75

MO-Opt option-reusing algorithm was shown how to accelerate learning in MORL tasks. The76

option-based method helped the machine to give a solution faster while providing solutions according77

to multiple human preferences.78

Now, the next step is to model the GRN inference and/or intervention as a sequential decision-making79

problem, analyzing how RL can be used for this and studying other previous related works in the80

area, like [6] for instance. After that, we will try to find ways to scale and specialize general-purpose81

RL methods for our domain. The first steps were performed by the aforementioned works, and we82

intend to evaluate them in the context of GRN inference and control first, to at least have insights on83

what must be improved.84
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